
The Hassenpflug matrix tensor notation

D.N.J. Els
Department of Mechanical Engineering
University of Stellenbosch, South Africa

e-mail: dnjels@sun.ac.za

2001/12/10

Abstract

This is a sample document to illustrate the typesetting of vectors, matrices
and tensors according to the matrix tensor notation of Hassenpflug[1, 2].
The first section describes the bare basics of the notation and please note
that there is much more to the notation than the little bit described here.
The second and third sections are applications of the notation in rotation
kinematics.

Keywords: vector, matrix, tensor, notation

N.B. — This document is neither a guide nor a reference document for the
Hassenpflug notation. For any reference to the material in §1 (excluding
equation 1.9), please cite the original copyrighted articles [1, 2].

Contents

1 Hassenpflug matrix tensor notation 2
1.1 Basic vector Notation . 2
1.2 Vector Transformations . 3
1.3 Vector rotations . 4

2 Rotation kinematics 5
2.1 The rotation matrix (Rodriguez formula) 5
2.2 Angular velocity . 7
2.3 Attitude determination . 8

3 Euler symmetric parameters 9
3.1 Background . 9
3.2 Transformation matrix . 9
3.3 Time derivatives of the Euler parameters 10
3.4 Notes on numerical integration 11

References 12

1

mailto:dnjels@sun.ac.za

1 Hassenpflug matrix tensor notation

1.1 Basic vector Notation

All vectors are in the 3-dimensional Euclidean space R3 and tensors in R3×3.
Any other vector space will be explicitly stated. The rest of this section lists
the basic definitions of the notation of Hassenpflug [1, 2]

Physical vector: v−→ ≡ −→e1 v1 +−→e2 v2 +−→e3 v3 (1.1)

The physical vector is the general representation of a vector in any coordinate
system. The unit vectors −→ei, (i = 1, 2, 3), define the direction of the axes in
a right-handed orthogonal Cartesian system. The components, −→ei vi, are the
components of the vector and the scalar quantities, vi, the elements of the
vector.

Column vector: va ≡

va1

va2

va3

 (1.2)

The column matrix of the elements of a vector is called a column vector and
is the algebraic representation of a vector. The bar above the symbol of the
vector indicates a column vector and the superscript (a) the index of the specific
coordinate system in which the elements of the vector are expressed.

Row vector: va ≡ [va]T =
[
va1 va2 va3

]
(1.3)

The row matrix of the elements of a vector is called a row vector. The bar below
the symbol of the vector indicates a row vector and the subscript (a) indicates
the index of the specific coordinate system in which the elements of the vector
are expressed. It is important to note that in general [va]T = vT

a for skew
and curved coordinates, see Hassenpflug [2]. The format in (1.3) without the
transpose sign is only valid in Cartesian coordinates.

Norm:

‖ v−→‖ ≡ v, (1.4a)

‖v‖ ≡ v ≡
√

v·v =
√

v2
1 + v2

2 + v2
3 (1.4b)

The norm of a vector is the algebraic size or length of the vector. The second
equation, (1.4b), in element form, is only valid in Cartesian coordinates or
Euclidean space.

Scalar, dot or
inner product:

v−→ • u−→ ≡ v−→·u−→ = v u cos ϕ, (1.5a)

v • u ≡ v·u = v1u1 + v2u2 + v3u3 (1.5b)

The scalar product of two vectors results in a scalar. The angle ϕ is the angle
in space between v−→ and u−→.

2

Dyad or
outer product:

v ◦ u ≡ v·u =

v1u1 v1u2 v1u3

v2u1 v2u2 v2u3

v3u1 v3u2 v3u3

 (1.6)

The dyad or outer product of two vectors results in a square matrix. There exists
a well-defined algebra for dyads. It is sometimes convenient to handle second-
rank Cartesian tensors such as inertia tensors as a linear polynomial of dyads,
called a dyadic.

Vector or
cross product:

v−→× u−→ ≡ (v2u3 − v3u2)−→e1

+ (v3u1 − v1u3)−→e2

+ (v1u2 − v2u1)−→e3, (1.7a)

‖a−→× c−→‖ = v u sinϕ (1.7b)

The cross product of the two vector v−→ and u−→ results in a vector perpendicular
to both v−→ and u−→. This operation is only defined in 3-dimensional Cartesian
space. The angle ϕ is the angle in space between v−→ and u−→.

The cross product can also be defined in terms of a matrix-vector operation
v × u ≡ ṽ·u

Cross product
tensor:

ṽ ≡

 0 −v3 v2

v3 0 −v1

−v2 v1 0

 (1.8)

Various identities for the cross product tensor can be verified. These identi-
ties will be extensively used throughout this article.[

ṽ
]T

= −ṽ
[
ṽ
]2

= v·v − v2I ṽ + u = ṽ + ũ

ṽ·u = −ũ·v
[
ṽ
]3

= −v2ṽ
˜̃
v·u = ṽ·ũ− ũ·ṽ

(1.9)

with I the 3× 3 identity matrix.

I ≡

 1 0 0
0 1 0
0 0 1

 (1.10)

1.2 Vector Transformations

In this section only a basic overview of vector rotations and transformations is
given to establish the basic nomenclature and definitions. For a more in-depth
discussion refer to Hassenpflug [1].

Consider two Cartesian axis systems denoted by s and r as shown in Fig. 1.1(a)
on the following page. From the general definition of a vector, (1.1), follows

v−→ =
[−→es1

−→es2
−→es3

]
·

vs1

vs2

vs3

 =
−→
E s·vs (1.11)

3

s1 s1

s2 s2

r1 r1

r2 r2

−→es1
−→es1

−→es2
−→es2

−→er1

−→er2
−→er2

vs1 vs1

vr1

vs2

vr2

v−→

v−→

−→vR

vRs1

vRr1

Figure 1.1(a): Vector transformation Figure 1.1(b): Vector rotations

The quantity,
−→
E s = [−→es1

−→es2
−→es3], is the base of the axis system denoted by s.

It consists of the three orthogonal vectors parallel to the axes. From the outer
product (1.6) follows for the inverse of base

−→
E s:[−→

E s

]T

·
−→
E s = E−→

s·
−→
E s = I ⇒

[−→
E s

]T

=
[−→

E s

]−1

= E−→
s

(1.12)

We can repeat the procedure of (1.11) for the vector v−→ in terms of base
−→
E r.

The relationship of the elements of vector v−→ in terms of base
−→
E s and base

−→
E r

is then

v−→ =
−→
E r·vr =

−→
E s·vs ⇒

 vs = E−→
s·
−→
E r = E

s

r·vr

vr = E−→
r·
−→
E s = E

r

s·vs
(1.13)

The matrix quantities E
s

r and E
r

s are then the transformation matrices of the
components of a vector between the two bases

−→
E s and

−→
E r. The columns of the

transformation matrix E
s

r are the elements of the unit vector −→esi
expressed in

base E−→s
and the rows are the unit vectors −→e

sj expressed in base
−→
E r.

E
s

r =
[

ser1
ser2

ser3

]
=

 res1

res2

res3

 (1.14)

The properties of the transformation matrix are well-known, for example[
E

s

r

]T

=
[
E

s

r

]−1

= E
r

s (1.15)

1.3 Vector rotations

Consider the case of a vector in space with initial position v−→. The vector is
rotated to a new position in space, −→vR. Define the rotation tensor operation
then as

−→vR =
−→
R−→· v−→ (1.16)

4

If the operation is applied to the rotation of all the direction vectors of a
base

−→
E s to a new rotated base

−→
E r, then
−→
E r =

−→
R−→·
−→
E s (1.17)

or
E

s

r = E−→
s·
−→
R−→·
−→
E s = R

s

s (1.18)

With reference to Fig. 1.1(b) on the page before, consider the case of a
vector fixed in a rotating base

−→
E r with initial position v−→ and final position

after a rotation of −→vR. If the initial orientation of
−→
E r corresponds with that of

−→
E s, the numerical values of the components of vs and rvR are equal. From the
transformation of −→vR it then follows that

svR = E
s

r· rvR = R
s

s·vs (1.19)

If the rotation matrix is transformed between bases, then

R
r

r = E
r

s·R
s

s·E
s

r = R
s

s (1.20)

The rotation matrix is therefore identical in terms of both bases and we can
denote it without the base indices, except when there is more than one rotation.
The rotation matrix between bases

−→
E s and

−→
E r in terms of the transformation

matrix is given by

R =E
s

r (1.21)[
R

]−1
=

[
R

]T
= E

r

s (1.22)

2 Rotation kinematics

2.1 The rotation matrix (Rodriguez formula)

Euler’s theorem states that the most general displacement of a rigid body with
one point fixed is equivalent to a single rotation about some axis through that
point. With reference to Fig. 2.1 on the following page, consider a vector with
initial position v−→. The vector is rotated about an axis defined by the unit vector
a−→, through an angle ϑ. The vector after rotation is denoted by −→vR. From the
geometry in Fig. 2.1 on the next page, it can be shown (e.g., Argyris[3]) for the
vector components in terms of the stationary base

−→
E s that

svR = vs + sinϑ (as × vs) + (1− cos ϑ)
(
as × (as × vs)

)
(2.1a)

=
[
I + sinϑ ã

s

s + (1− cos ϑ) ã
s

s·ã
s

s

]
·vs (2.1b)

Equation (2.1b) was obtained from (2.1a) with the aid of the cross product
tensor (1.8) while I is the 3× 3 unit matrix.

By comparing (2.1b) with (1.20), the general format of the rotation matrix
for a rotation through an angle ϑ about an axis as fixed in base

−→
E s is given by

R = I + 2 cos ϑ
2 sin ϑ

2 ã
s

s + 2 sin2 ϑ
2 ã

s

s·ã
s

s (2.2)

R
T

= I − 2 cos ϑ
2 sin ϑ

2 ã
s

s + 2 sin2 ϑ
2 ã

s

s·ã
s

s (2.3)

5

a−→

ϑv−→ −→vR

s1

s2

s3

r1r2

r3

Figure 2.1: General vector rotation

Equation 2.2 is also known as the Rodriguez formula. The equations were
rewritten in terms of ϑ/2 for the convenience of definitions that follow later in
the article.

If v−→ is fixed to a rotating base
−→
E r, with vs = rvR (see Fig. 1.1(a) and 1.1(b)

on page 4), then E
s

r is the transformation matrix from base
−→
E r to base

−→
E s and

E
s

r = R (2.4)

E
r

s = R
T

(2.5)

Note for the transformation of the cross product tensor associated with the
rotation axis, is ã

s

s = ã
r

r = ã, because the components are identical in both the
bases. In the rest of this article the basis reference indexes for ã are not shown
except where a distinction must be made between two different rotations.

For numerical purposes (2.2) can be written as a single matrix. Let c = cos ϑ
and s = sinϑ, then the rotation or transformation matrix is given by

R = E
s

r =

 a2
1(1−c)+c a1a2(1−c)−a3s a1a3(1−c)+a2s

a1a2(1−c)+a3s a2
2(1−c)+c a2a3(1−c)−a1s

a1a3(1−c)−a2s a2a3(1−c)+a1s a2
3(1−c)+c

 (2.6)

It is frequently necessary to find the rotation axis a−→ and rotation angle ϑ
for a known transformation matrix, E

s

r = Eij . From (2.6) various relationships
can be deducted. Two of the more important ones are

2 cos ϑ = E11 + E22 + E33 − 1 (2.7)

2 sinϑ a =

E32 − E23

E13 − E31

E21 − E12

 (2.8)

When ϑ ≈ π equation (2.8) cannot be used to find a. Another, more general,
approach is to consider the characteristic polynomial of E

s

r.

det
[
E

s

r − λI
]

= (λ2 + 2λ cos ϑ + 1)(1− λ) = 0 (2.9)

6

It leads to the eigenvalues λ = eiϑ, e−iϑ, 1. It can therefore be stated that λ = 1
is always an eigenvalue of E

s

r and that an eigenvector or axis a = as = ar exists
that is unchanged by the rotation. The rotation axis can be obtained with a
numerical method by solving the eigenvector problem E

s

r·a = a.

2.2 Angular velocity

Define the vectors xs and ẋs = dxs/dt as the position and velocity of a particle
or point with components in terms of a static base

−→
E s, while xr and ẋr are the

position and apparent velocity in terms of a rotating base
−→
E r.

xs = E
s

r·xr (2.10)

and

ẋs = E
s

r·
[
ẋr + E

r

s·Ė
s

r·xr
]

= E
s

r·
[
ẋr + ω̃

r

r·xr
]

(2.11)

It can be proven (e.g., Meirovitch[4, §3.2]) that the tensor

ω̃
r

r = E
r

s·Ė
s

r

ω̃
s

s = E
s

r·ω̃
r

r·E
r

s = Ė
r

s·E
r

s

(2.12)

is the cross product tensor of angular velocity ω−→.
We proceed next to obtain ω−→ as a function of a−→ and ϑ. The following

identities can then be verified from the fact that a−→ is a unit vector, (a·a = 1),
implying that (a·ȧ = 0):

ã· ˙̃a·ã = −(a·ȧ) ã = 0

ã·ã· ˙̃a·ã = −(a·ȧ) ã·ã = 0
(2.13)

The angular velocity tensor in (2.12), after the differentiation of the trans-
formation matrix (2.2) and algebraic manipulation with the aid of (2.13) and
(1.9) is

ω̃
r

r = ϑ̇ ã + sinϑ
˙̃
a− 2 sin2 ϑ

2

[
ã· ˙̃a− ˙̃

a·ã
]

= ϑ̇ ã + sinϑ
˙̃
a− 2 sin2 ϑ

2
˜̃
a·ȧ

(2.14)

From (2.14), the vector equation for ωr and ωs (where the latter can be
derived with the same arguments), follows then as

ωr = ϑ̇ a + sinϑ ȧ− 2 sin2 ϑ
2 ã·ȧ

ωs = ϑ̇ a + sinϑ ȧ + 2 sin2 ϑ
2 ã·ȧ

(2.15)

The inner or scalar product of (2.15) gives the norm of the angular velocity

ω2 = ωr·ωr = ωs·ωs = ϑ̇2 + 4 sin ϑ
2 ȧ2 (2.16)

From (2.15) the time derivative of the rotation angle ϑ is

ϑ̇ = a·ωr = a·ωs (2.17)

7

which leads to

ϑ̇ a = (a·ωr) a = ωr + ã·ã·ωr

= (a·ωs) a = ωs + ã·ã·ωs
(2.18)

At this point it is important to note that in many good reference texts (see
for example Wertz[5, pp. 511–512]) the authors make the incorrect statement
that ω−→ = ω a−→. Inspection of (2.15) – (2.17) reveals that a−→·ω−→ = ϑ̇ 6= ω. The
angular velocity vector ω−→ is therefore in general not in the direction of the
instantaneous rotation axis a−→.

The vector ȧ can be obtained from (2.15) by the substitution of (2.18) and
assuming a solution of the form [I +α ã+β ã·ã]. With the aid of the identities
in (2.13) and (1.9), it leads to

ȧ = 1
2

[
+ã− cot ϑ

2 ã·ã
]
·ωr ≡ K r·ωr

= 1
2

[
−ã− cot ϑ

2 ã·ã
]
·ωs ≡ K s·ωs

(2.19)

Note the notation in (2.19) for K r. It is a tensor in a mixed base (see
Hassenpflug [1]), because ar = as. For the transformation between bases it can
also be confirmed that

K r = K s·E
s

r (2.20)

The general kinematic equations for a rotating base are given by (2.17) and
(2.19). The four scalar equations describe only three degrees of freedom and
are constrained by ‖a‖ = 1. These equations can be integrated to obtain E

s

r

as a function of time, but (2.19) is singular for values of ϑ = 0,±2π, · · · . This
renders a general numeric solution impractical.

The equations for the angular velocity, (2.15) are well-known, see for example
Shabana[6, §5.14]. The author could not find any reference to the inverse form
for ϑ̇, (2.17), and ȧ, (2.19), in terms of ω−→, although it is highly likely that they
might exist in the classical literature.

2.3 Attitude determination

The classic problem in rotation kinematics is that the angular velocity cannot
be integrated to obtain the orientation of a rotating base, because the integral
is dependent on the path of integration. The most basic method to find the
orientation of

−→
E r as a function of time is to integrate (2.12) directly,

Ė
s

r = ω̃
s

s·E
s

r =
[
ωs × ser1 ωs × ser2 ωs × ser3

]
Ė

r

s = −ω̃
r

r·E
r

s = −
[
ωr × res1 ωr × res2 ωr × res3

] (2.21)

Only two of the vectors need to be integrated. The third vector can be obtained
from the cross product (e1 × e2 = e3). This method involves six parameters
while there are only three degrees of freedom. With a lot of effort and by careful
selection of elements from the orthogonality constraint requirement E

s

r·E
r

s = I,
it can be refined to three parameters . It is also advisable that the constraint
equation be enforced through frequent normalization, to compensate for the fact
that the constraints are not taken into account during integration.

8

3 Euler symmetric parameters

3.1 Background

Throughout history many parameterization methods were devised to obtain the
relationships between the orientation of a rotating base and its angular velocity.

The Euler symmetric parameter method is one of the classic methods. It
has gained popularity in the aerospace engineering environment for foolproof
attitude determination algorithms, because it contains no numerical singulari-
ties. It has the disadvantage that it is a four-parameter method describing three
degrees of freedom, and therefore an additional differential equation, together
with its constraint, must be solved.

It is also called the rotation quaternion because it can be represented as a
unit quaternion, obeying all the rules of quaternion algebra.

3.2 Transformation matrix

After inspection of (2.2), define the four Euler parameters

q0 = cos ϑ
2 q = sin ϑ

2 a =

q1

q2

q3

 (3.1)

The transformation matrix (2.2), in terms of the Euler parameters, is then

E
s

r(q0, q) = I + 2q0 q̃ + 2 q̃·q̃ (3.2)

E
r

s(q0, q) = E
s

r(q0, −q) (3.3)

or in element form

E
s

r(q0, q) =

2q2
0 + 2q2

1 − 1 2(q1q2 − q3q0) 2(q1q3 + q2q0)
2(q1q2 + q3q0) 2q2

0 + 2q2
2 − 1 2(q2q3 − q1q0)

2(q1q3 − q2q0) 2(q2q3 + q1q0) 2q2
0 + 2q2

3 − 1

 (3.4)

The four Euler parameters are not independent, but are constrained by the
condition for the transformation matrix, E

s

r·E
r

s = I, which implies that

q2
0 + q2

1 + q2
2 + q2

3 = q2
0 + q·q = 1 (3.5)

and which is indeed satisfied by (3.1).
From (3.2) it is clear that changing the signs of all the Euler parameters

simultaneously does not affect the transformation matrix

E
s

r(−q0,−q) = E
s

r(q0, q) (3.6)

The initial values of q0 and q can be obtained for a known transformation
matrix E

s

r = Eij from (3.4). The following equations are the relationships that
can be deducted

4q2
0 = 1 + E11 + E22 + e33

4q2
1 = 1 + E11 − E22 − e33

4q2
2 = 1− E11 + E22 − E33

4q2
3 = 1− E11 − E22 + E33

(3.7)

9

4q1q0 = E32 − E23

4q2q0 = E13 − E31

4q3q0 = E21 − E12

and
4q1q2 = E12 + E21

4q1q3 = E13 + E31

4q2q3 = E23 + E32

(3.8)

The absolute values of Euler parameters are obtained from (3.7).

|2 q0| =
√

1 + E11 + E22 + E33

|2 q1| =
√

1 + E11 − E22 − E33

|2 q2| =
√

1− E11 + E22 − E33

|2 q3| =
√

1− E11 − E22 + E33

(3.9)

The unity constraint (3.5), implies that at least one of the Euler parameters is
not zero. Furthermore, a simultaneous sign change of all the Euler parameters
has no effect on the transformation matrix, see (3.6). To avoid singularities
and for the best numerical accuracy, select the absolute value of the largest
parameter from (3.9) as initial value and then calculate the Euler parameters
accordingly from (3.7) and (3.8).


q0

q1

q2

q3

 =



|2 q0|
2

E32−E23
2 |2 q0|

E13−E31
2 |2 q0|

E21−E12
2 |2 q0|

 or



E32−E23
2 |2 q1|
|2 q1|

2

E12+E21
2 |2 q1|

E13+E31
2 |2 q1|

 or



E13−E31
2 |2 q2|

E12+E21
2 |2 q2|
|2 q2|

2

E23+E32
2 |2 q2|

 or


E21−E12
2 |2 q3|

E13+E31
2 |2 q3|

E23+E32
2 |2 q3|
|2 q3|

2

 (3.10)

3.3 Time derivatives of the Euler parameters

The time derivatives of the Euler parameters (3.1), with the aid of (2.17) and
(2.19), are for ω−→ in terms of base

−→
E r

q̇0 = − 1
2 sin ϑ

2 ϑ̇ q̇ = 1
2 cos ϑ

2 ϑ̇ a + sin ϑ
2 ȧ

= − 1
2 sin ϑ

2 a·ωr = 1
2 cos ϑ

2 ωr + 1
2 sin ϑ

2 ã·ωr (3.11)

= − 1
2 q·ωr = 1

2 q0 ωr + 1
2 q̃·ωr

The same procedure can be repeated for ω−→ in terms of base
−→
E s. Equation

(3.11) can be rewritten in the more familiar matrix format[
q̇0

q̇

]
=

1
2

[
0 −ωr

ωr −ω̃
r

r

]
·

[
q0

q

]
=

1
2

[
0 −ωs

ωs +ω̃
s

s

]
·

[
q0

q

]
(3.12)

The constraint equation (3.5) in differential form is

q0q̇0 + q1q̇1 + q2q̇2 + q3q̇3 =
[
q0 q

]
·

[
q̇0

q̇

]
= 0 (3.13)

If (3.12) is substituted into (3.13), it confirms, as expected, that (3.12) still
satisfies the constraint condition.

10

3.4 Notes on numerical integration

Equation (3.12) in general cannot be integrated analytically and we must resort
to numerical integration methods. For illustration purposes, consider the sim-
plest numerical integration scheme, namely the first order Euler method. Let

Q =

[
q0

q

]
and Q̇ =

[
q̇0

q̇

]
= 1

2 Ωr ·Q = 1
2 Ωs ·Q (3.14)

with Ωr, Ωr ∈ R4×4 from (3.12)

Ωr =

[
0 −ωr

ωr −ω̃
r

r

]
and Ωs =

[
0 −ωs

ωs +ω̃
s

s

]
(3.15)

The Euler parameters at time t can then be updated over a time step ∆t
with

Q(t+∆t) ≈ Q(t) + ∆t Q̇(t) =
[
I + ∆t Ω(t)

]
·Q(t) (3.16)

where Ω is either Ωr or Ωs.
Assume that Q(t) conforms to the constraint condition, then after the inte-

gration time step it is found that

QT(t+∆t) ·Q(t+∆t) = 1 + 1
4

(
∆t ω(t)

)2 (3.17)

It is thus clear that the integration process results in an updated set of
parameters that violates the required constraint. This condition only vanishes
in the limit when ∆t→0. This necessitates that the parameters be normalized at
regular intervals for most numerical integration methods or that the integration
method be tailored to take the constraint into consideration.

Wertz[5, §17.1] discusses a useful approximate integrator of the Euler pa-
rameters kinematic equations, by Wilcox[7] and Iwens & Farrenkopf [8]. This
integration method is used for realtime onboard attitude determination of space-
craft from gyro telemetry.

11

References

[1] Hassenpflug, W.C., “Matrix Tensor Notation Part I. Rectilinear Orthogonal
Coordinates,” Computers Math. Applic. 26 (3) (1993) 55–93.

[2] Hassenpflug, W.C., “Matrix Tensor Notation Part II. Skew and Curved Co-
ordinates,” Computers Math. Applic. 29 (11) (1993) 1–103.

[3] Argyris, J., “An excursion into large rotations,” Comput. Methods Appl.
Mech. Engrg. 32 (1982) 85–155

[4] Meirovitch, L., Methods of Analytical Dynamics, McGraw-Hill, New York,
(1970)

[5] Wertz, J.R. (editor), Spacecraft Attitude Determination and Control, Kluver
Academic Publishers, London, (1978).

[6] Shabana, A.A., Computational Dynamics, John Wiley & Sons, New York,
(1994)

[7] Wilcox, J.C., “A New Algorithm for Strapped-Down Inertial Navigation,”
IEEE Trans. on Aerospace and Electronic Systems AES-3 (5) (1967) 796–
802.

[8] Iwens, R.P. and Farrenkopf, R., “Performance Evaluation of a Precision At-
titude Determination System (PADS),” Guidance Control and Flight Me-
chanics Conference, AIAA Paper No. 71-964, AIAA, Hofstra U., Hempstead,
NY, (Aug 1971),

12

	Hassenpflug matrix tensor notation
	Basic vector Notation
	Vector Transformations
	Vector rotations

	Rotation kinematics
	The rotation matrix (Rodriguez formula)
	Angular velocity
	Attitude determination

	Euler symmetric parameters
	Background
	Transformation matrix
	Time derivatives of the Euler parameters
	Notes on numerical integration

	References

