<
, for two elements in a PathAlgebraModule 6.7-12<
, for two elements in a path algebra 4.5-2<
, for two elements of a path algebra 4.13-4<
, for two paths in a quiver 3.7-7*
3.7-5.
, for a path algebra 4.4-4.
, for quiver 3.5-1/
6.7-131stSyzygy
8.1-1=
3.7-6\* (maps)
7.2-3\+ (maps)
7.2-2\=
, for two path algebra matrix modules 6.1-3\= (maps)
7.2-1\^
10.2-6\in
, elt. in path alg. and ideal 4.7-6^
, a PathAlgebraMatModule element and a PathAlgebra element 6.3-1^
, a PathAlgebraModule element and a PathAlgebra element 6.7-11AddNthPowerToRelations
4.7-5AdjacencyMatrixOfQuiver
3.5-4AdmitsFinitelyManyNontips
5.3-1AlgebraAsModuleOverEnvelopingAlgebra
4.16-11AlgebraAsQuiverAlgebra
4.17-1AllComplementsOfAlmostCompleteCotiltingModule
8.1-2AllComplementsOfAlmostCompleteTiltingModule
8.1-2AlmostSplitSequence
9.1-1AnnihilatorOfModule
6.4-1ARQuiverNumerical
13.3-1ARQuiverNumerical
13.3-1ARQuiverNumerical
13.3-1ARQuiverNumerical
13.3-1ArrowsOfQuiver
3.5-3AssignGeneratorVariables
4.6-1AssociatedMonomialAlgebra
4.4-1BasicVersionOfModule
6.4-2BasisOfProjectives
6.5-1BilinearFormOfUnitForm
12.2-2BlockDecompositionOfModule
6.4-3BlockSplittingIdempotents
6.4-4BoundariesOfComplex
10.5-6BrutalTruncation
10.6-6BrutalTruncationAbove
10.6-5BrutalTruncationBelow
10.6-4CanonicalAlgebra
4.14-1CartanMatrix
4.12-1CatOfComplex
10.5-1CatOfRightAlgebraModules
10.3-2Centre/Center
4.12-2ChainMap
10.7-2Coefficients
4.13-2CoKernel
7.3-1CoKernelOfWhat
7.2-4CoKernelProjection
7.3-2CommonDirectSummand
6.4-5ComparisonLifting
10.7-8ComparisonLiftingToProjectiveResolution
10.7-9CompletelyReduce
5.3-2CompletelyReduceGroebnerBasis
5.3-3CompletelyReduceGroebnerBasisForModule
6.7-2Complex
10.4-3ComplexAndChainMaps
10.7-5ComplexityOfAlgebra
4.12-3ComplexityOfModule
6.4-6ConnectedComponentsOfQuiver
3.5-11ConstantInfList
10.2-25CosyzygyTruncation
10.6-8CotiltingModule
8.1-3CoxeterMatrix
4.12-4CoxeterPolynomial
4.12-5Cut
10.2-20CyclesOfComplex
10.5-5DecomposeModule
6.4-7DecomposeModuleWithMultiplicities
6.4-8DegOrderDirectPredecessors
13.5-3DegOrderDirectSuccessors
13.5-6DegOrderLEQ
13.4-6DegOrderLEQNC
13.4-7DegOrderPredecessors
13.5-2DegOrderPredecessorsWithDirect
13.5-4DegOrderSuccessors
13.5-5DegOrderSuccessorsWithDirect
13.5-7DifferentialOfComplex
10.5-3DifferentialsOfComplex
10.5-4DimEnd
13.4-3Dimension
4.12-6Dimension
, for a PathAlgebraMatModule 6.4-9DimensionVector
6.4-10DimensionVector
, DimVectFT 13.4-1DimHom
13.4-2Direction
10.2-9DirectSumInclusions
6.4-12DirectSumOfQPAModules
6.4-11DirectSumProjections
6.4-13DominantDimensionOfAlgebra
8.1-4DominantDimensionOfModule
8.1-5DTr
6.6-3DualOfAlgebraAsModuleOverEnvelopingAlgebra
4.16-12DualOfModule
6.6-1DualOfModuleHomomorphism
6.6-2DualOfTranspose
6.6-3DynkinQuiver
, DynkinQuiver 3.2-2ElementFunction
10.2-12ElementOfPathAlgebra
4.5-1ElementOfQuotientOfPathAlgebra
4.13-5EndModuloProjOverAlgebra
7.3-3EndOfModuleAsQuiverAlgebra
7.3-4EndOverAlgebra
7.3-5Enumerator
5.3-4EnvelopingAlgebra
4.16-9EulerBilinearFormOfAlgebra
12.2-9ExtAlgebraGenerators
8.1-6ExtOverAlgebra
8.1-7FaithfulDimension
8.1-8FiniteChainMap
10.7-4FiniteComplex
10.4-5FiniteInfList
10.2-26FinitePartAsList
10.2-36ForEveryDegree
10.5-17FromEndMToHomMM
7.3-6FromHomMMToEndM
7.3-7FullSubquiver
3.5-10FunctionInfList
10.2-24GeneratorsOfQuiver
3.5-5GlobalDimension
4.12-7GlobalDimensionOfAlgebra
8.1-9GorensteinDimension
8.1-10GorensteinDimensionOfAlgebra
8.1-11GroebnerBasis
5.1-2GroebnerBasisOfIdeal
4.10-1HalfInfList
10.2-21HaveFiniteCoresolutionInAddM
8.1-12HaveFiniteResolutionInAddM
8.1-13HighestKnownDegree
10.5-12HighestKnownPosition
10.2-32HighestKnownValue
10.2-18HomFactoringThroughProjOverAlgebra
7.3-8HomFromProjective
7.3-9HomologyOfComplex
10.5-7HomomorphismFromImages
7.2-27HomOverAlgebra
7.3-10Ideal
4.7-1IdealOfQuotient
4.7-2IdentityMapping
7.2-5Image
7.3-11ImageElm
7.2-6ImageInclusion
7.3-12ImageOfWhat
7.2-8ImageProjection
7.3-13ImageProjectionInclusion
7.3-14ImagesSet
7.2-7IncludeInProductQuiver
4.16-4IncomingArrowsOfVertex
3.8-1IndecInjectiveModules
6.5-2IndecProjectiveModules
6.5-3InDegreeOfVertex
3.8-3InfConcatenation
10.2-41InfList
10.2-42InfListType
10.2-10InfoGroebnerBasis
5.1-1InfoQuiver
3.1-1InitialValue
10.2-16InjDimension
8.1-14InjDimensionOfModule
8.1-15InjectiveEnvelope
8.1-16InjectiveResolution
11.1-1IntegersList
10.2-43IntersectionOfSubmodules
6.4-14IsAcyclicQuiver
3.3-2IsAdmissibleIdeal
4.8-1IsAdmissibleQuotientOfPathAlgebra
4.11-1IsARQuiverNumerical
13.3-2IsArrow
3.6-3IsBasicAlgebra
4.17-2IsCanonicalAlgebra
4.11-4IsCat
10.3-1IsChainMap
10.7-1IsCompleteGroebnerBasis
5.2-2IsCompletelyReducedGroebnerBasis
5.2-1IsConnectedQuiver
3.3-4IsCotiltingModule
8.1-17IsDirectSummand
6.4-15IsDirectSumOfModules
6.4-16IsDistributiveAlgebra
4.11-5IsDynkinQuiver
3.3-6IsElementaryAlgebra
4.17-3IsElementOfQuotientOfPathAlgebra
4.13-1IsEnvelopingAlgebra
4.16-10IsExactInDegree
10.5-15IsExactSequence
10.5-14IsExceptionalModule
6.4-17IsFiniteComplex
10.5-8IsFiniteDimensional
4.11-3IsFiniteGlobalDimensionAlgebra
4.11-6IsFiniteTypeAlgebra
4.11-23IsGentleAlgebra
4.11-7IsGorensteinAlgebra
4.11-8IsGroebnerBasis
5.2-3IsHalfInfList
10.2-5IsHereditaryAlgebra
4.11-9IsHomogeneousGroebnerBasis
5.2-4IsIdealInPathAlgebra
4.8-2IsInAdditiveClosure
6.4-19IsIndecomposableModule
6.4-18IsInfiniteNumber
10.2-1IsInfList
10.2-4IsInjective
7.2-9IsInjectiveComplex
11.1-3IsInjectiveModule
6.4-20IsIsomorphism
7.2-10IsKroneckerAlgebra
4.11-10IsLeftDivisible
6.7-3IsLeftMinimal
7.2-11IsLeftUniform
4.5-3IsMonomialAlgebra
4.11-11IsMonomialIdeal
4.8-3IsNakayamaAlgebra
4.11-12IsNormalForm
4.13-3IsOmegaPeriodic
8.1-18IsomorphicModules
6.4-21IsomorphismOfModules
7.3-15IsPath
3.6-1IsPathAlgebra
4.3-1IsPathAlgebraMatModule
6.2-1IsPathAlgebraModule
6.7-4IsPathAlgebraModuleHomomorphism
7.1-1IsPathAlgebraVector
6.7-5IsPrefixOfTipInTipIdeal
5.3-5IsProjectiveComplex
11.1-2IsProjectiveModule
6.4-22IsQPAComplex
10.4-1IsQuadraticIdeal
4.8-4IsQuiver
3.3-1IsQuiverAlgebra
4.11-13IsQuiverProductDecomposition
4.16-3IsQuiverVertex
3.6-2IsQuotientOfPathAlgebra
4.11-2IsRadicalSquareZeroAlgebra
4.11-14IsRepeating
10.2-15IsRightGroebnerBasis
5.4-1IsRightMinimal
7.2-12IsRightUniform
4.5-4IsRigidModule
6.4-23IsSchurianAlgebra
4.11-15IsSelfinjectiveAlgebra
4.11-16IsSemicommutativeAlgebra
4.11-17IsSemisimpleAlgebra
4.11-18IsSemisimpleModule
6.4-24IsShortExactSequence
10.5-16IsSimpleQPAModule
6.4-25IsSpecialBiserialAlgebra
4.11-19IsSpecialBiserialQuiver
4.14-5IsSplitEpimorphism
7.2-13IsSplitMonomorphism
7.2-14IsStoringValues
10.2-13IsStringAlgebra
4.11-20IsSurjective
7.2-15IsSymmetricAlgebra
4.11-21IsTauPeriodic
9.1-2IsTauRigidModule
6.4-26IsTipReducedGroebnerBasis
5.2-5IsTreeQuiver
3.3-5IsTtiltingModule
8.1-19IsUAcyclicQuiver
3.3-3IsUniform
4.5-5IsUnitForm
12.2-1IsWeaklyNonnegativeUnitForm
12.2-3IsWeaklyPositiveUnitForm
12.2-4IsWeaklySymmetricAlgebra
4.11-22IsZero
6.4-28IsZero
7.2-16IsZeroComplex
10.4-2IsZeroPath
3.6-4Iterator
5.3-6IyamaGenerator
8.1-20Kernel
7.3-16KernelInclusion
7.3-16KernelOfWhat
7.2-17KroneckerAlgebra
4.14-2LeadingCoefficient
4.5-7LeadingCoefficient (of PathAlgebraVector)
6.7-6LeadingComponent
6.7-7LeadingMonomial
4.5-8LeadingPosition
6.7-8LeadingTerm
4.5-6LeadingTerm (of PathAlgebraVector)
6.7-9LeftApproximationByAddTHat
8.1-21LeftDivision
6.7-10LeftFacMApproximation
8.1-22LeftInverseOfHomomorphism
7.2-18LeftMinimalVersion
7.3-17LeftMutationOfCotiltingModuleComplement
8.1-23LeftMutationOfTiltingModuleComplement
8.1-23LeftSubMApproximation
8.1-24LengthOfComplex
10.5-11LengthOfPath
3.7-3LiftingCompleteSetOfOrthogonalIdempotents
4.18-1LiftingIdempotent
4.18-2LiftingInclusionMorphisms
8.1-25LiftingMorphismFromProjective
8.1-26LoewyLength
4.12-8LoewyLength
, for a PathAlgebraMatModule 6.4-27LowerBound
10.2-35LowerBound
10.5-10LowestKnownDegree
10.5-13LowestKnownPosition
10.2-17LowestKnownPosition
10.2-33MakeHalfInfList
10.2-7MakeInfList
10.2-23MakeInfListFromHalfInfLists
10.2-22MakeUniformOnRight
4.5-9MappedExpression
4.5-10MappingCone
10.7-10MatricesOfPathAlgebraMatModuleHomomorphism
7.2-19MatricesOfPathAlgebraModule
6.4-29MaximalCommonDirectSummand
6.4-30MiddleEnd
10.2-28MiddlePart
10.2-29MiddleStart
10.2-27MinimalGeneratingSetOfModule
6.4-32MinimalLeftAddMApproximation
8.1-27MinimalLeftApproximation
8.1-27MinimalLeftFacMApproximation
8.1-22MinimalLeftSubMApproximation
8.1-24MinimalRightAddMApproximation
8.1-28MinimalRightApproximation
8.1-28MinimalRightFacMApproximation
8.1-40MinimalRightSubMApproximation
8.1-42ModulesOfDimVect
13.5-1MorphismOfChainMap
10.7-6MorphismOnCoKernel
8.1-29MorphismOnImage
8.1-29MorphismOnKernel
8.1-29MorphismsOfChainMap
10.7-7N_RigidModule
8.1-43NakayamaAlgebra
4.14-3NakayamaAutomorphism
4.12-9NakayamaFunctorOfModule
6.6-4NakayamaFunctorOfModuleHomomorphism
6.6-5NakayamaPermutation
4.12-10NegativeInfinity
10.2-3NegativePart
10.2-31NegativePartFrom
10.2-38NeighborsOfVertex
3.8-5NewValueCallback
10.2-14Nontips
5.3-7NontipSize
5.3-8NthPowerOfArrowIdeal
4.7-4NthSyzygy
8.1-30NthSyzygyNC
8.1-31NumberOfArrows
3.5-7NumberOfComplementsOfAlmostCompleteCotiltingModule
8.1-32NumberOfComplementsOfAlmostCompleteTiltingModule
8.1-32NumberOfIndecomposables
13.3-3NumberOfNonIsoDirSummands
6.4-31NumberOfProjectives
13.3-4NumberOfVertices
3.5-6ObjectOfComplex
10.5-2OppositePath
4.15-1OppositePathAlgebra
4.15-2OppositePathAlgebraElement
4.15-3OppositeQuiver
3.5-9OrbitCodim
13.4-5OrbitDim
13.4-4OrderedBy
3.2-3OrderingOfAlgebra
4.4-3OrderingOfQuiver
3.5-8OrderOfNakayamaAutomorphism
4.12-11OriginalPathAlgebra
4.13-6OutDegreeOfVertex
3.8-4OutgoingArrowsOfVertex
3.8-2PathAlgebra
4.2-1PathAlgebraOfMatModuleMap
7.2-20PathAlgebraVector
6.7-14PathsOfLengthTwo
4.7-3PositiveInfinity
10.2-2PositivePart
10.2-30PositivePartFrom
10.2-37PositiveRootsOfUnitForm
12.2-5PredecessorOfModule
9.1-3PreImagesRepresentative
7.2-21PrimitiveIdempotents
4.17-4PrintMultiplicityVector
13.4-8PrintMultiplicityVectors
13.4-9ProductOfIdeals
4.9-1ProjDimension
8.1-33ProjDimensionOfModule
8.1-34ProjectFromProductQuiver
4.16-5ProjectiveCover
8.1-35ProjectivePathAlgebraPresentation
6.7-15ProjectiveResolution
11.1-4ProjectiveResolutionOfComplex
11.2-1ProjectiveResolutionOfPathAlgebraModule
8.1-36ProjectiveToInjectiveComplex
11.2-2ProjectiveToInjectiveFiniteComplex
11.2-2PullBack
8.1-37PushOut
8.1-38QuadraticFormOfUnitForm
12.2-6QuadraticPerpOfPathAlgebraIdeal
4.9-2Quiver
, adjacenymatrix 3.2-1Quiver
, lists of vertices and arrows 3.2-1Quiver
, no. of vertices, list of arrows 3.2-1QuiverOfPathAlgebra
4.4-2QuiverProduct
4.16-1QuiverProductDecomposition
4.16-2RadicalOfModule
6.4-33RadicalOfModuleInclusion
7.3-19RadicalSeries
6.4-34RadicalSeriesOfAlgebra
4.12-12Range
7.2-22ReadAlgebra
4.19-1RejectOfModule
7.3-20RelationsOfAlgebra
4.5-12RepeatingList
10.2-11RightAlgebraModuleToPathAlgebraMatModule
6.1-2RightApproximationByPerpT
8.1-39RightFacMApproximation
8.1-40RightGroebnerBasis
5.4-2RightGroebnerBasisOfIdeal
5.4-3RightGroebnerBasisOfModule
6.7-16RightInverseOfHomomorphism
7.2-23RightMinimalVersion
7.3-18RightModuleHomOverAlgebra
7.1-2RightModuleOverPathAlgebra
, no dimension vector 6.1-1RightModuleOverPathAlgebra
, with dimension vector 6.1-1RightModuleOverPathAlgebraNC
, no dimension vector 6.1-1RightMutationOfCotiltingModuleComplement
8.1-41RightMutationOfTiltingModuleComplement
8.1-41RightProjectiveModule
6.7-1RightSubMApproximation
8.1-42SaveAlgebra
4.19-2SeparatedQuiver
3.5-12Shift
10.2-19Shift
10.2-39Shift
10.6-1ShiftUnsigned
10.6-2ShortExactSequence
10.4-7SimpleModules
6.5-4SimpleTensor
4.16-7SocleOfModule
6.4-36SocleOfModuleInclusion
7.3-21SocleSeries
6.4-35Source
7.2-24SourceOfPath
3.7-1Splice
10.2-40StalkComplex
10.4-6StarOfMapBetweenDecompProjectives
11.2-5StarOfMapBetweenIndecProjectives
11.2-5StarOfMapBetweenProjectives
11.2-5StarOfModule
6.6-6StarOfModuleHomomorphism
6.6-7StartPosition
10.2-8SubRepresentation
6.4-37SubRepresentationInclusion
7.3-22SumOfSubmodules
6.4-38SupportModuleElement
6.4-39SymmetricMatrixOfUnitForm
12.2-7SyzygyCosyzygyTruncation
10.6-9SyzygyTruncation
10.6-7TargetOfPath
3.7-2TargetVertex
6.7-17TauOfComplex
11.2-3TensorProductDecomposition
4.16-8TensorProductOfAlgebras
4.16-6TiltingModule
8.1-44Tip
4.5-6TipCoefficient
4.5-7TipMonomial
4.5-8TipReduce
5.3-9TipReduceGroebnerBasis
5.3-10TitsUnitFormOfAlgebra
12.2-8TopOfModule
6.4-40TopOfModuleProjection
7.3-23TraceOfModule
7.3-24TransposeOfDual
6.6-8TransposeOfModule
6.6-9TrD
6.6-8TrivialExtensionOfQuiverAlgebra
4.16-13TruncatedPathAlgebra
4.14-4UniformGeneratorsOfModule
6.7-18UnitForm
12.2-10UpperBound
10.2-34UpperBound
10.5-9Vectorize
6.7-19VertexPosition
4.5-11VerticesOfQuiver
3.5-2WalkOfPath
3.7-4YonedaProduct
10.6-3Zero
7.2-25ZeroChainMap
10.7-3ZeroComplex
10.4-4ZeroMapping
7.2-26ZeroModule
6.5-5
generated by GAPDoc2HTML