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1 isl interface

1.1 Library

The barvinok library currently supports only a few functions that interface with the

isl library. In time, this interface will grow and is set to replace the PolyLib interface.

For more information on the isl data structures, see the isl user manual.

__isl_give isl_pw_qpolynomial *isl_basic_set_card(

__isl_take isl_basic_set *bset);

__isl_give isl_pw_qpolynomial *isl_set_card(__isl_take isl_set *set);

__isl_give isl_union_pw_qpolynomial *isl_union_set_card(

__isl_take isl_union_set *uset);

Compute the number of elements in an isl basic set, isl set or isl union set.

The resulting isl pw qpolynomial or isl union pw qpolynomial has purely para-

metric cells.

__isl_give isl_pw_qpolynomial *isl_basic_map_card(

__isl_take isl_basic_map *bmap);

__isl_give isl_pw_qpolynomial *isl_map_card(__isl_take isl_map *map);

__isl_give isl_union_pw_qpolynomial *isl_union_map_card(

__isl_take isl_union_map *umap);

Compute a closed form expression for the number of image elements associated to any

element in the domain of the given isl basic map, isl map or isl union map. The

union of the cells in the resulting isl pw qpolynomial is equal to the domain of the

input isl map.

__isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_sum(

__isl_take isl_pw_qpolynomial *pwqp);

__isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_sum(

__isl_take isl_union_pw_qpolynomial *upwqp);

Compute the sum of the given piecewise quasipolynomial over all integer points in the

domain. The result is a piecewise quasipolynomial that only involves the parameters.

If, however, the domain of the piecewise quasipolynomial wraps a relation, then the

sum is computed over all integer points in the range of that relation and the domain of

the relation becomes the domain of the result.

__isl_give isl_pw_qpolynomial *isl_set_apply_pw_qpolynomial(

__isl_take isl_set *set, __isl_take isl_pw_qpolynomial *pwqp);

__isl_give isl_union_pw_qpolynomial *isl_union_set_apply_union_pw_qpolynomial(

__isl_take isl_union_set *uset,

__isl_take isl_union_pw_qpolynomial *upwqp);

Compute the sum of the given piecewise quasipolynomial over all integer points in the

intersection of the domain and the given set.
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for (i = 1; i <= n; ++i)

for (j = 1; j <= i; ++j)

/* S */

Figure 1.1: A loop nest

__isl_give isl_pw_qpolynomial *isl_map_apply_pw_qpolynomial(

__isl_take isl_map *map, __isl_take isl_pw_qpolynomial *pwqp);

__isl_give isl_union_pw_qpolynomial *isl_union_map_apply_union_pw_qpolynomial(

__isl_take isl_union_map *umap,

__isl_take isl_union_pw_qpolynomial *upwqp);

Compose the given map with the given piecewise quasipolynomial. That is, compute

the sum over all elements in the intersection of the range of the map and the domain of

the piecewise quasipolynomial as a function of an element in the domain of the map.

1.2 Calculator

The iscc calculator offers an interface to some of the functionality provided by the

isl and barvinok libraries. The language used by iscc is extremely simple. The

calculator supports operations on constants and dynamically typed variables and as-

signments (:=) to those variables. If the result of an expression is not used inside

another expression and not assigned to a variable, then this result is printed on the

screen. The operators are overloaded based on the types of the arguments, which may

be sets, relations, piecewise quasipolynomials, piecewise quasipolynomial folds, lists,

strings or booleans. The supported operations are shown in Table 1. Note that when an

operation requires an argument of a certain type, a binary list with the first element of

the required type may also be used instead. For a detailed description of some of the

concepts behind isl and iscc, refer to Verdoolaege (2016).

1.2.1 Sets and Iteration Domains

Within the polyhedral model for analysis and transformation of static affine pro-

grams, the most basic kind of set is the iteration domain. The iteration domain repre-

sents the iterations of a statement in a loop nest. Take, for example, the loop nest in

Figure 1.1 and assume first that n has a fixed value, say 5. The pairs of values of i and j

for which statement S is executed are shown graphically in Figure 1.2. Mathematically,

this set of pairs can be represented as

{ (i, j) ∈ Z2 | 1 ≤ i ≤ 5 ∧ 1 ≤ j ≤ i }

and the isl notation is very similar:

{ [i,j] : 1 <= i <= 5 and 1 <= j <= i }

In this notation, the coordinates are separated by commas and enclosed in square brack-

ets. This description of the space in which the set lives is followed by a colon and the
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j

i

Figure 1.2: The iteration domain of the loop nest in Figure 1.1

constraints on the coordinates. Assuming the iterators are incremented by one in every

iterations of the loop, a lower and upper bound on each loop iterator can be read off

from the initialization and the test. Note that in an iscc set, the coordinates are as-

sumed to be integer by default. For an iteration domain to be representable by such a

set, the iterators therefore need to be integers.

The constraints of a set need to be affine, i.e., linear plus constant term. These affine

constraint may be combined through conjunctions (and), disjunctions (or), projections

(exists) and negations (not). Note that the formula is immediately converted into

Disjunctive Normal Form (DNF), so it may sometimes be more efficient to construct a

set from smaller sets by applying basic operations such as intersection (*), union (+)

and difference (-). For example, the following square with its diagonal removed,

{ (i, j) | 0 ≤ i, j ≤ 10 ∧ ¬(i = j) }

can be constructed as

{ [i,j] : 0 <= i,j <= 10 } - { [i,i] }

or as

{ [i,j] : 0 <= i,j <= 10 and not (i = j) }

Note that an occurrence of a relational operator in a set description may define several

constraints, one for each pair of arguments. The elements in a list of arguments are

separated by a comma. If there are no constraints on the coordinates, i.e., in case of a

universe set, the colon may be omitted as well. For example

{ [] }

represents the entire (unnamed) zero-dimensional space, and should not be confused

with

{ }

which represents the empty set.

Returning to the iteration domain of the loop nest in Figure 1.1, we usually do not

want to analyze such a program for a specific value of n, but instead for all possible
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values of n at once. A generic description of the iteration domain can be obtained

through the introduction of a (free) parameter, as in

[n] -> { [i,j] : 1 <= i <= n and 1 <= j <= i }

The optional parameters should be declared by placing them in a comma delimited list

inside [] (followed by an “->”) in front of the main set description. The parameters

are global and are identified by their names, so the order inside the list is arbitrary. This

should be contrasted to the coordinates of a space, the names of which are only relevant

within the description of the set and which are instead identified by their positions. That

is,

[n] -> { [i,j] : 1 <= i <= n and 1 <= j <= i }

is equal to

[n] -> { [a,b] : 1 <= a <= n and 1 <= b <= a }

but it is not equal to

[n] -> { [j,i] : 1 <= i <= n and 1 <= j <= i }

(because the order of the coordinates has changed) or

[m] -> { [i,j] : 1 <= i <= m and 1 <= j <= i }

(because it involves a different parameter).

It is sometimes convenient to represent constraints that only involve parameters and

that are not tied to any particular space. To construct such a parameter domain, the list

of coordinates should simply be omitted. Note that the colon is required in this case,

even if there are no constraints. In particular,

{ : }

represents the universal parameter domain, which is very different from the empty set.

To plug in a particular value for a parameter, the user should take the intersection

(*) with a parameter domain assigns a particular value to the parameter. For example,

S := [n] -> { [i,j] : 1 <= i <= n and 1 <= j <= i };

S * [n] -> { : n = 5 };

It should be noted, though, that the result is not the same as simply replacing n by 5 as

the result of the above sequence will still have the global parameter n set to 5. To avoid

this assignment, the user should instead compute the gist (%) of the original set in the

context of setting n to 5. That is, the result of the sequence below is True.

S1 := { [i,j] : 1 <= i <= 5 and 1 <= j <= i };

S2 := [n] -> { [i,j] : 1 <= i <= n and 1 <= j <= i };

(S2 % [n] -> { : n = 5}) = S1;

If a loop has a non-unit stride as in Figure 1.3 then affine constraints on the coor-

dinates and the parameters are not sufficient to represent the iteration domain. What is

needed is a way to express that the value of i is equal to 1 plus 3 times some integer

and this is where existentially quantified variables can be used. Existentially quantified

8



for (i = 1; i <= n; i += 3)

/* S */

Figure 1.3: A loop with non-unit stride

for (i = 1; i <= n; ++i)

if ((i + 1) % 5 <= 2)

/* S */

Figure 1.4: A loop with a modulo condition

variables are introduced by the exists keyword and followed by a colon. They can

only be used within a single disjunct. As an example, the iteration domain of the loop

in Figure 1.3 can be represented as

[n] -> { [i] : exists a : 1 <= i <= n and i = 1 + 3 a }

Existentially quantified variables are also useful to represent modulo constraints.

Consider for example the loop in Figure 1.4. The iterator values i for which the state-

ment S is executed lie between 1 and n and are such that the remainder of i + 1 on

division by 5 is less than or equal to 2. The constraint (i + 1) mod 5 ≤ 2 can be written

as (i + 1) − 5
⌊

i+1
5

⌋

≤ 2, where f =
⌊

i+1
5

⌋

is the greatest integer part of i+1
5

. That is, f is

the unique integer value satisfying the constraints 5 f ≤ i + 1 and 5 f ≥ (i + 1) − 4. The

iteration domain of the statement in Figure 1.4 can therefore be represented as

[n] -> { [i] : exists f : 1 <= i <= n and (i + 1) - 5 f <= 2 and

(i + 1) - 4 <= 5 f <= i + 1 }

Since greatest integer parts occur relatively frequently, there is a special notation for

them in isl using []. The above set can therefore also be represented as

[n] -> { [i] : 1 <= i <= n and (i + 1) - 5 * [(i + 1)/5] <= 2 }

Actually, since modulos are pretty common too, isl also has a special notation for

them and the set can therefore also be respresented as

[n] -> { [i] : 1 <= i <= n and (i + 1) % 5 <= 2 }

It should be noted that [] always rounds down (towards −∞), while integer division in

C truncates (towards 0). When translating conditions in C containing integer divisions

and/or modulos to isl constraints, the user should therefore make sure the sign of the

dividend is positive. If not, the integer division needs to be translated differently for

positive and negative values.

Most programs involve more than one statement. Although it is possible to work

with different sets, each representing the iteration domain of a statement, it is usually

more convenient to collect all iteration domains in a single set. To be able to differen-

tiate between iterations of different statements with the same values for the iterators,

isl allows spaces to be named. The name is placed in front of the [] enclosing the

9



for (i = 0; i < n; ++i)

T: t[i] = a[i];

for (i = 0; i < n; ++i)

for (j = 0; j < n - i; ++j)

F: t[j] = f(t[j], t[j+1]);

for (i = 0; i < n; ++i)

B: b[i] = t[i];

Figure 1.5: A program with three loop nests

iterators. Consider for example the program in Figure 1.5. The program contains three

statements which have been labeled for convenience. The iteration domain of the first

statement (T) can be represented as

[n] -> { T[i] : 0 <= i < n }

The union of all iteration domains can be represented as

[n] -> {

T[i] : 0 <= i < n;

F[i,j] : 0 <= i < n and 0 <= j < n - i;

B[i] : 0 <= i < n

}

The semicolon ; is used to express a disjunction between spaces. This should be con-

trasted with the or keyword which expresses a disjunction between conjunctions of

constraints. For example, the result of the following iscc statement is True.

{ [i] : i = 3 or i = 5 } = { [3]; [5] };

1.2.2 Maps and Access Relations

A second important concept in the polyhedral model is that of an access relation. An

access relation connects iterations of a statement to the array elements accessed by

those iterations. Such a binary relation can be represented by a map in isl. Maps

are defined in similar way to sets, except that the single space is replaced by a pair of

spaces separated by ->. As an example, consider once more the program in Figure 1.5.

In particular, consider the access t[j+1] in statement F. The index expression maps

the pair of iterations i and j to t[j+1], i.e., element j+1 of a space with name t.

Ignoring the loop bound constraints, this access relation can be represented as

{ F[i,j] -> t[j + 1] }

It is however customary to include the constraints on the iterators in the access relation,

resulting in

[n] -> { F[i,j] -> t[j + 1] : 0 <= i < n and 0 <= j < n - i }

10



The constraints can be added by intersecting the domains of the access relations with

the iteration domains. For example, the following sequence constructs the access rela-

tion for all reads in the program.

D := [n] -> {

T[i] : 0 <= i < n;

F[i,j] : 0 <= i < n and 0 <= j < n - i;

B[i] : 0 <= i < n

};

Read := {

T[i] -> a[i];

F[i,j] -> t[j];

F[i,j] -> t[j + 1];

B[i] -> t[i]

};

Read := Read * D;

In this sequence, the * operator, when applied to a map and a set, intersects the domain

of the map with the set.

The notation R(S) can be used to compute the image of the set S under the map

R. For example, given the sequence above, Read({F[0,1]}) computes the array ele-

ments read in iteration (0, 1) of statement F and is equal to

[n] -> { t[2] : n >= 2; t[1] : n >= 2 }

That is, elements 1 and 2 of the t array are read, provided n is at least 2.

Maps need not be single-valued. As an example, assume that A is a two-dimensional

array of size n in both dimensions. Iterations i of a statement S may pass a pointer to

an entire row of A to a function as in f(A[i]). Without knowing anything about f, we

would have to assume that this function may access any element of the row. The access

relation corresponding to A[i] is therefore

[n] -> { S[i] -> A[i,j] : 0 <= i,j < n }

This map associates n elements of A to each iteration of S.

1.2.3 Nested Spaces

Each space may contain a nested pair of spaces. Such nested spaces are extremely

useful in more advanced applications. As an example, suppose that during equivalence

checking (Verdoolaege et al. 2009) of two programs the iterations of S1 in one program

are supposed to produce the same results as the same iterations of SA in the other

program, which may be described using the following map

[n] -> { S1[i] -> SA[i] : 0 <= i <= n }

If the iterations of S1 depend on the same iterations of S2, i.e., {S1[i]->S2[i]},

while those of SA depend on the next iteration of B, i.e., {SA[i]->SB[i+1]}, then we

can apply the cross product of these two dependence maps, i.e.,
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{ [S1[i] -> SA[i’]] -> [S2[i] -> SB[1+i’]] }

to the original map to find out which iterations of S2 should correspond to which iter-

ations of SB.

1.2.4 Basic Operations

Basic operations on sets and maps include intersection (*), union (+), difference (-),

cross product (cross), sampling (sample), affine hull (aff), lexicographic optimiza-

tion (lexmin or lexmax), subset (<=) and equality (=) tests, code generation (codegen)

and the cardinality (card). Additional operations on maps include computing domain

(dom) and range (ran), differences between image and domain (deltas), join (.), in-

verse (ˆ-1) and transitive closure (ˆ+). The latter may result in an overapproximation.

The card operation computes the number of elements in a set or the number of

elements in the image of a domain element of a map. The operation is performed

exactly and completely symbolically and the result is a piecewise quasipolynomial,

i.e., a subdivision of one or more spaces, with a quasipolynomial associated to each

cell in the subdivision. As a trivial example, the result of

card { A[i] -> B[j] : 0 <= j <= i }

is { A[i] -> (1+i) : i >= 0 }. Operations on piecewise quasipolynomials in-

clude sum (+) and difference (-) and the computation of an upper bound over the do-

main. If the domain contains a pair of nested spaces, then the upper bound is computed

over the nested range. As another trivial example, the result of

ub{ [[i] -> [j]] -> jˆ2 : -i <= j <= i }

is ({ [i] -> max(iˆ2) : i >= 0 }, True). The first element in this list is the

actual bound in the form of a piecewise quasipolynomial fold, i.e., a maximum of

quasipolynomials defined over cells. The second indicates whether the bound is tight,

i.e., whether a maximum has been computed.

1.2.5 Advanced Operations

While the basic card operation simply counts the number of elements in an affine set,

it is also possible to assign a weight to each element of the set and to compute the sum

of those weights over all the points in the set. The syntax for this weighted counting

is to compute the sum of a piecewise quasipolynomial over its domain. As in the case

of the ub operator, if the domain contains a pair of nested space, the sum is computed

over the range. As an example, the result of

sum{ [[i] -> [j]] -> i*j : 0 <= j <= i }

is { [i] -> (1/2*iˆ2+1/2*iˆ3) : i >= 0 }.

After the computation of some sum or bound, the result may have to be reformu-

lated in terms of other variables. For example, during inter procedural analysis, a result

computed in terms of the formal parameters may have to be reformulated in terms of

the actual parameters. iscc therefore allows maps and piecewise quasipolynomials
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or folds to be composed. If the map is multi-valued, then the composition maps each

domain element to the sum or upper bound of the values at its image elements.

Finally, because of its high-level representation, iscc can provide a dependence

analysis operation taking only three maps as input, the sink accesses, the potential

source accesses and a schedule. The result is a single dependence map.

1.2.6 More Examples

P := [n, m] -> { [i,j] : 0 <= i <= n and i <= j <= m };

card P;

f := [n,m] -> { [i,j] -> i*j + n*i*i*j : i,j >= 0 and 5i + 27j <= n+m };

sum f;

s := sum f;

s @ [n,m] -> { : 0 <= n,m <= 20 };

f := [n] -> { [i] -> 2*n*i - n*n + 3*n - 1/2*i*i - 3/2*i-1 :

(exists j : 0 <= i < 4*n-1 and 0 <= j < n and

2*n-1 <= i+j <= 4*n-2 and i <= 2*n-1 ) };

ub f;

u := (ub f)[0];

u @ [n] -> { : 0 <= n <= 10 };

m := [n] -> { [i,j] -> [i+1,j+1] : 1 <= i,j < n;

[i,j] -> [i+1,j-1] : 1 <= i < n and 2 <= j <= n };

mˆ+;

(mˆ+)[0];

codegen [N] -> { A[i] -> [i,0] : 0 <= i <= N; B[i] -> [i,1] : 1 <= i <= N };

{ [k] -> [i] : 1 <= i <= k } . { [n] -> 2 * n : n >= 1 };

{ [m] -> [c] : 1 <= c <= m } . { [k] -> max((3 * k + kˆ2)) : k >= 1 };

1.2.7 Comparison to other Interactive Polyhedral Tools

Two related interactive polyhedral tools are the Omega calculator (Kelly et al. 1996)

and SPPoC (Boulet and Redon 2001). The syntax of iscc was very much inspired

by that of the Omega calculator. However, the Omega calculator only knows sets and

maps. In particular, it does not perform any form of counting. An earlier version of

barvinok came with a modified version of the Omega calculator that introduced an

operation for counting the number of elements in a set, but it would simply print the

result and not allow any further manipulations. SPPoC does support counting, but only

the basic operation of counting the elements in a set. In particular, it does not support

weighted counting, nor the computation of upper bounds. It also only supports (single-

valued) functions and not generic relations like the Omega calculator and iscc. Inter-
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nally, SPPoC uses PolyLib, PipLib and omega to perform its operations. Although

the first two of these libraries may have been state-of-the-art at the time SPPoC was

created, they are no longer actively maintained and have been largely superseded by

more recent libraries. In particular, PipLib effectively only supports a single oper-

ation, which is now also available in both isl and PPL. The operations on rational

polyhedra in PolyLib are also available in PPL, usually through a cleaner interface

and with a more efficient implementation. As to counting the elements in a paramet-

ric polytope, Barvinok’s algorithm, implemented in the barvinok library, is usually

much faster than the algorithm implemented in PolyLib (Verdoolaege et al. 2007b).

Furthermore, the ability to work with named and nested spaces and the ability of sets

and maps to contain (pairs of) elements from different spaces are not available in the

Omega calculator and SPPoC.
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Table 1: iscc operations. The variables have the following types, s: set, m: map, q:

piecewise quasipolynomial, f : piecewise quasipolynomial fold, t: schedule (tree), l:

list, i: integer, b: boolean, S : string, o: object of any type

Syntax Meaning

s2 := aff s1 affine hull of s1

m2 := aff m1 affine hull of m1

q := card s number of elements in the set s

q := card m number of elements in the image of a domain ele-

ment

s2 := coalesce s1 simplify the representation of set s1 by trying to

combine pairs of basic sets into a single basic set

m2 := coalesce m1 simplify the representation of map m1 by trying to

combine pairs of basic maps into a single basic map

q2 := coalesce q1 simplify the representation of q1 by trying to com-

bine pairs of basic sets in the domain of q1 into a

single basic set

f2 := coalesce f1 simplify the representation of f1 by trying to com-

bine pairs of basic sets in the domain of f1 into a

single basic set

codegen t generate code for the given schedule.

codegen m generate code for the given schedule.

codegen m1 using m2 generate code for the schedule m1 using the options

m2.

s2 := coefficients s1 The set of coefficients of valid constraints for s1

s2 := solutions s1 The set of elements satisfying the constraints with

coefficients in s1

s3 := s1 cross s2 Cartesian product of s1 and s2

m3 := m1 cross m2 Cartesian product of m1 and m2

m3 := m1 cross range m2 Cartesian product of the ranges of m1 and m2 for

their shared domain

s := deltas m the set { y − x | x→ y ∈ m }

m2 := deltas map m1 the map { (x→ y)→ y − x | x→ y ∈ m1 }

s := dom m domain of map m

s := dom q domain of piecewise quasipolynomial q

s := dom f domain of piecewise quasipolynomial fold f

s := dom t domain of schedule t

s := domain m domain of map m

s := domain q domain of piecewise quasipolynomial q

s := domain f domain of piecewise quasipolynomial fold f

s := domain t domain of schedule t

m2 := domain map m1 a map from a wrapped copy of m1 to the domain of

m1

continued on next page
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Syntax Meaning

s := ran m range of map m

s := range m range of map m

m2 := range map m1 a map from a wrapped copy of m1 to the range of m1

m := identity s identity relation on s

q := lattice width s lattice width of the set s

l := lb q compute a lower bound on the piecewise quasipoly-

nomial q over all integer points in the domain of q

and return a list containing the lower bound and a

boolean that is true if the lower bound is known to

be tight. If the domain of q wraps a map, then the

lower bound is computed over all integer points in

the range of the wrapped map instead.

s2 := lexmin s1 lexicographically minimal element of s1

m2 := lexmin m1 lexicographically minimal image element

s2 := lexmax s1 lexicographically maximal element of s1

m2 := lexmax m1 lexicographically maximal image element

s2 := lift s1 lift s1 to a space with extra dimensions correspond-

ing to the existentially quantified variables in s1

such that domain(unwrap(lift S)) is equal to S

m := map t convert schedule t to a map representation

s2 := params s1 parameter domain of set s1

s := params m parameter domain of map m

l := parse file S parse the file names S and return a list consisting

of the iteration domain, the must write access rela-

tion, the may write access relation, the read access

relation and the original schedule. This operation is

only available if pet support was compiled in.

s2 := poly s1 polyhedral hull of s1

m2 := poly m1 polyhedral hull of m1

q2 := poly q1 polynomial approximation of q1

q2 := lpoly q1 polynomial underapproximation of q1

q2 := upoly q1 polynomial overapproximation of q1

l := pow m compute an overapproximation of the power of m

and return a list containing the overapproximation

and a boolean that is true if the overapproximation

is known to be exact

print o print object

o := read "filename" read object from file

s2 := sample s1 a sample element of the set s1

m2 := sample m1 a sample element of the map m1

s2 := scan s1 the set s1 split into individual elements, provided s1

contains a finite number of elements

continued on next page
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Syntax Meaning

m2 := scan m1 the map m1 split into individual elements, provided

m1 contains a finite number of elements

source "filename" read commands from file

q2 := sum q1 sum q1 over all integer points in the domain of q1,

or, if the domain of q1 wraps a map, over all integer

points in the range of the wrapped map.

S := typeof o a string representation of the type of o

l := ub q compute an upper bound on the piecewise

quasipolynomial q over all integer points in the do-

main of q and return a list containing the upper

bound and a boolean that is true if the upper bound is

known to be tight. If the domain of q wraps a map,

then the upper bound is computed over all integer

points in the range of the wrapped map instead.

l := vertices s a list of vertices of the rational polytope defined by

the same constraints as s

s := wrap m wrap the map in a set

m := unwrap s unwrap the map from the set

write "filename" o write object to file

m2 := zip m1 the cross product of domain and range of m1, i.e.,

{ (w→ y)→ (x→ z) | (w→ x)→ (y→ z) ∈ m1 }

m3 := any m1 before m2

under t

compute a map from any element x in the domain of

m1 to any element y in the domain of m2 such that

their images m1(x) and m2(y) overlap and such that

x is scheduled before y by t.

m4 := any m1 before m2

under m3

same as the previous operation, with the schedule

represented by a map.

l := last m1 before m2

under t

compute a map that contains for any element y in

the domain of m2 a mapping from the last element x

in the domain of m1 (according to the schedule t) to

y such that m1(x) and m2(y) overlap and such that x

is scheduled before y by t. Return a list containing

this map and the subset of m2 for which there is no

corresponding element in the domain of m1.

l := last m1 before m2

under m3

same as the previous operation, with the schedule

represented by a map.

m4 := any m1 last m2

before m3 under t

compute a map that contains for any element y in

the domain of m3 a mapping from the last element

x in the domain of m2 (according to the schedule

t) to y such that m2(x) and m3(y) overlap and such

that x is scheduled before y by t as well as from any

element z in the domain of m1 such that m1(z) and

m3(y) overlap, z is scheduled before y by t and such

that there is no x in the domain of m2 with m2(x) ∩

m3(y) , ∅ and x scheduled between z and y by t.

continued on next page
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Syntax Meaning

m5 := any m1 last m2

before m3 under m4

same as the previous operation, with the schedule

represented by a map.

t := schedule s respecting

m1 minimizing m2

compute a schedule for the domains in s that re-

spects all dependences in m1 and tries to minimize

the dependences in m2.

b3 := b1 + b2 or

i3 := i1 + i2 sum

s3 := s1 + s2 union

m3 := m1 + m2 union

q3 := q1 + q2 sum

f2 := f1 + q sum

f2 := q + f1 sum

S 3 := S 1 + S 2 concatenation

S 2 := o + S 1 concatenation of stringification of o and S 1

S 2 := S 1 + o concatenation of S 1 and stringification of o

i3 := i1 − i2 difference

s3 := s1 − s2 set difference

m3 := m1 − m2 set difference

m2 := m1 − s subtract s from the domain of m1

m2 := m1 ->- s subtract s from the range of m1

q3 := q1 − q2 difference

b3 := b1 ∗ b2 and

i3 := i1 ∗ i2 product

s3 := s1 ∗ s2 intersection

m3 := m1 ∗ m2 intersection

q2 := i ∗ q1 product

q2 := q1 ∗ i product

q3 := q1 ∗ q2 product

f2 := i ∗ f1 product

f2 := f1 ∗ i product

m2 := m1 ∗ s intersect domain of m1 with s

q2 := q1 ∗ s intersect domain of q1 with s

f2 := f1 ∗ s intersect domain of f1 with s

m2 := m1 ->∗ s intersect range of m1 with s

s2 := m(s1) apply map m to set s1

q2 := q1(s) apply q1 to each element in s and compute the sum

of the results

l := f (s) apply f to each element in s, compute a bound of

the results and return a list containing the bound and

a boolean that is true if the bound is known to be

tight.

continued on next page
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Syntax Meaning

m3 := m1 . m2 join of m1 and m2

m3 := m1 before m2 join of m1 and m2

m3 := m2(m1) join of m1 and m2

m3 := m2 after m1 join of m1 and m2

f3 := f1 . f2 join of f1 and f2, combining the lists of quasipoly-

nomials over shared domains

q2 := m . q1 join of m and q1, taking the sum over all elements in

the intersection of the range of m and the domain of

q1

q2 := m before q1 q2 := m . q1

q2 := q1(m) q2 := m . q1

q2 := q1 after m q2 := m . q1

l := m . f join of m and f , computing a bound over all el-

ements in the intersection of the range of m and

the domain of f and returning a list containing the

bound and a boolean that is true if the bound is

known to be tight.

l := m before f l := m . f

l := f (m) l := m . f

l := f after m l := m . f

m := s1 -> s2 universal map with domain s1 and range s2

q2 := q1 @ s evaluate the piecewise quasipolynomial q1 in each

element of the set s and return a piecewise

quasipolynomial mapping each of the individual el-

ements to the resulting constant

q := f @ s evaluate the piecewise quasipolynomial fold f in

each element of the set s and return a piecewise

quasipolynomial mapping each of the individual el-

ements to the resulting constant

s3 := s1 % s2 simplify s1 in the context of s2, i.e., compute the gist

of s1 given s2

m3 := m1 % m2 simplify m1 in the context of m2, i.e., compute the

gist of m1 given m2

m2 := m1 % s simplify m1 in the context of the domain s, i.e., com-

pute the gist of m1 given domain s

q2 := q1 % s simplify q1 in the context of the domain s, i.e., com-

pute the gist of q1 given s

f2 := f1 % s simplify f1 in the context of the domain s, i.e., com-

pute the gist of f1 given s

m2 := m1ˆi the ith power of m1; if i is negative then the result is

the (−i)th power of the inverse of m1

continued on next page

19



Syntax Meaning

l := mˆ+ compute an overapproximation of the transitive clo-

sure of m and return a list containing the overap-

proximation and a boolean that is true if the overap-

proximation is known to be exact

o := l[i] the element at position i in the list l

b := q1 == q2 is q1 obviously equal to q2?

b := f1 == f2 is f1 obviously equal to f2?

b := s1 = s2 is s1 equal to s2?

b := m1 = m2 is m1 equal to m2?

b := S 1 = S 2 is S 1 equal to S 2?

b := s1 <= s2 is s1 a subset of s2?

b := m1 <= m2 is m1 a subset of m2?

b := s1 < s2 is s1 a proper subset of s2?

b := m1 < m2 is m1 a proper subset of m2?

b := s1 >= s2 is s1 a superset of s2?

b := m1 >= m2 is m1 a superset of m2?

b := s1 > s2 is s1 a proper superset of s2?

b := m1 > m2 is m1 a proper superset of m2?

m := s1 << s2 a map from s1 to s2 of those elements that live in

the same space and such that the elements of s1 are

lexicographically strictly smaller than those of s2.

m3 := m1 << m2 a map from the domain of m1 to the domain of

m2 of those elements such that their images live in

the same space and such that the images of the el-

ements of m1 are lexicographically strictly smaller

than those of m2.

m := s1 <<= s2 a map from s1 to s2 of those elements that live in

the same space and such that the elements of s1 are

lexicographically smaller than those of s2.

m3 := m1 <<= m2 a map from the domain of m1 to the domain of m2

of those elements such that their images live in the

same space and such that the images of the elements

of m1 are lexicographically smaller than those of m2.

m := s1 >> s2 a map from s1 to s2 of those elements that live in

the same space and such that the elements of s1 are

lexicographically strictly greater than those of s2.

m3 := m1 >> m2 a map from the domain of m1 to the domain of

m2 of those elements such that their images live in

the same space and such that the images of the el-

ements of m1 are lexicographically strictly greater

than those of m2.

continued on next page
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Syntax Meaning

m := s1 >>= s2 a map from s1 to s2 of those elements that live in

the same space and such that the elements of s1 are

lexicographically greater than those of s2.

m3 := m1 >>= m2 a map from the domain of m1 to the domain of m2

of those elements such that their images live in the

same space and such that the images of the elements

of m1 are lexicographically greater than those of m2.
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2 PolyLib interface of the barvinok library (obsoles-

cent)

Although barvinok currently still uses PolyLib internally, this is likely to change in

the not too distant future. Consider using isl based alternatives for the functions in

this section as the latter are likely to be removed in future releases.

Our barvinok library is built on top of PolyLib (Wilde 1993; Loechner 1999).

In particular, it reuses the implementations of the algorithm of Loechner and Wilde

(1997) for computing parametric vertices and the algorithm of Clauss and Loechner

(1998) for computing chamber decompositions. Initially, our library was meant to

be a replacement for the algorithm of Clauss and Loechner (1998), also implemented

in PolyLib, for computing quasi-polynomials. To ease the transition of application

programs we tried to reuse the existing data structures as much as possible.

2.1 Existing Data Structures

Inside PolyLib integer values are represented by the Value data type. Depending on

a configure option, the data type may either by a 32-bit integer, a 64-bit integer or an

arbitrary precision integer using GMP. The barvinok library requires that PolyLib is

compiled with support for arbitrary precision integers.

The basic structure for representing (unions of) polyhedra is a Polyhedron.

typedef struct polyhedron {

unsigned Dimension, NbConstraints, NbRays, NbEq, NbBid;

Value **Constraint;

Value **Ray;

Value *p_Init;

int p_Init_size;

struct polyhedron *next;

} Polyhedron;

The attribute Dimension is the dimension of the ambient space, i.e., the number of

variables. The attributes Constraint and Ray point to two-dimensional arrays of con-

straints and generators, respectively. The number of rows is stored in NbConstraints

and NbRays, respectively. The number of columns in both arrays is equal to 1+Dimension+1.

The first column of Constraint is either 0 or 1 depending on whether the constraint

is an equality (0) or an inequality (1). The number of equalities is stored in NbEq. If

the constraint is 〈a, x〉+ c ≥ 0, then the next columns contain the coefficients ai and the

final column contains the constant c. The first column of Ray is either 0 or 1 depending

on whether the generator is a line (0) or a vertex or ray (1). The number of lines is

stored in NbBid. Let d be the least common multiple (lcm) of the denominators of

the coordinates of a vertex v, then the next columns contain dvi and the final column

contains d. For a ray, the final column contains 0. The field next points to the next

polyhedron in the union of polyhedra. It is 0 if this is the last (or only) polyhedron in

the union. For more information on this structure, we refer to Wilde (1993).

Quasi-polynomials are represented using the evalue and enode structures.
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typedef enum { polynomial, periodic, evector } enode_type;

typedef struct _evalue {

Value d; /* denominator */

union {

Value n; /* numerator (if denominator != 0) */

struct _enode *p; /* pointer (if denominator == 0) */

} x;

} evalue;

typedef struct _enode {

enode_type type; /* polynomial or periodic or evector */

int size; /* number of attached pointers */

int pos; /* parameter position */

evalue arr[1]; /* array of rational/pointer */

} enode;

If the field d of an evalue is zero, then the evalue is a placeholder for a pointer to an

enode, stored in x.p. Otherwise, the evalue is a rational number with numerator x.n

and denominator d. An enode is either a polynomial or a periodic, depending on

the value of type. The length of the array arr is stored in size. For a polynomial,

arr contains the coefficients. For a periodic, it contains the values for the different

residue classes modulo the parameter indicated by pos. For a polynomial, pos refers

to the variable of the polynomial. The value of pos is 1 for the first parameter. That is,

if the value of pos is 1 and the first parameter is p, and if the length of the array is l,

then in case it is a polynomial, the enode represents

arr[0] + arr[1]p + arr[2]p2 + · · · + arr[l-1]pl−1.

If it is a periodic, then it represents

[arr[0], arr[1], arr[2], . . . , arr[l-1]]p .

Note that the elements of a periodic may themselves be other periodics or even

polynomials. In our library, we only allow the elements of a periodic to be other

periodics or rational numbers. The chambers and their corresponding quasi-polynomial

are stored in Enumeration structures.

typedef struct _enumeration {

Polyhedron *ValidityDomain; /* constraints on the parameters */

evalue EP; /* dimension = combined space */

struct _enumeration *next; /* Ehrhart Polynomial,

corresponding to parameter

values inside the domain

ValidityDomain above */

} Enumeration;

For more information on these structures, we refer to Loechner (1999).
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type polynomial

size 3

pos 1

arr[0]
d 2

x.n 5

arr[1]
d 1

x.n 3

arr[2]
d 0

x.p

type periodic

size 2

pos 1

arr[0]
d 1

x.n 1

arr[1]
d 1

x.n 2

enode

enode

Figure 2.2: The quasi-polynomial [1, 2]p p2 + 3p + 5
2
.

Example 2.1 Figure 2.2 is a skillful reconstruction of Figure 2 from Loechner (1999).

It shows the contents of the enode structures representing the quasi-polynomial [1, 2]p p2+

3p + 5
2
.

2.2 Options

The barvinok options structure contains various options that influence the behavior

of the library.

struct barvinok_options {

struct barvinok_stats *stats;

/* PolyLib options */

unsigned MaxRays;

/* NTL options */

/* LLL reduction parameter delta=LLL_a/LLL_b */

long LLL_a;

long LLL_b;

/* barvinok options */

#define BV_SPECIALIZATION_BF 2

#define BV_SPECIALIZATION_DF 1

#define BV_SPECIALIZATION_RANDOM 0

#define BV_SPECIALIZATION_TODD 3

int incremental_specialization;

unsigned long max_index;

int primal;

int lookup_table;
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int count_sample_infinite;

int try_Delaunay_triangulation;

#define BV_APPROX_SIGN_NONE 0

#define BV_APPROX_SIGN_APPROX 1

#define BV_APPROX_SIGN_LOWER 2

#define BV_APPROX_SIGN_UPPER 3

int polynomial_approximation;

#define BV_APPROX_NONE 0

#define BV_APPROX_DROP 1

#define BV_APPROX_SCALE 2

#define BV_APPROX_VOLUME 3

#define BV_APPROX_BERNOULLI 4

int approximation_method;

#define BV_APPROX_SCALE_FAST (1 << 0)

#define BV_APPROX_SCALE_NARROW (1 << 1)

#define BV_APPROX_SCALE_NARROW2 (1 << 2)

#define BV_APPROX_SCALE_CHAMBER (1 << 3)

int scale_flags;

#define BV_VOL_LIFT 0

#define BV_VOL_VERTEX 1

#define BV_VOL_BARYCENTER 2

int volume_triangulate;

/* basis reduction options */

#define BV_GBR_GLPK 1

#define BV_GBR_CDD 2

int gbr_lp_solver;

#define BV_LP_POLYLIB 0

#define BV_LP_GLPK 1

#define BV_LP_CDD 2

#define BV_LP_CDDF 3

int lp_solver;

#define BV_HULL_GBR 0

#define BV_HULL_HILBERT 1

int integer_hull;

};

struct barvinok_options *barvinok_options_new_with_defaults();

The function barvinok options new with defaults can be used to create a

barvinok options structure with default values.

• PolyLib options
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– MaxRays

The value of MaxRays is passed to various PolyLib functions and defines

the maximum size of a table used in the double description computation in

the PolyLib function Chernikova. In earlier versions of PolyLib, this

parameter had to be conservatively set to a high number to ensure suc-

cessful operation, resulting in significant memory overhead. Our change

to allow this table to grow dynamically is available in recent versions of

PolyLib. In these versions, the value no longer indicates the maximal ta-

ble size, but rather the size of the initial allocation. This value may be set

to 0 or left as set by barvinok options new with defaults.

• NTL options

– LLL a

– LLL b

The values used for the reduction parameter in the call to NTL’s implemen-

tation of Lenstra, Lenstra and Lovasz’ basis reduction algorithm (LLL).

• barvinok specific options

– incremental specialization

Selects the specialization algorithm to be used. If set to 0 then a direct spe-

cialization is performed using a random vector. Value 1 selects a depth first

incremental specialization, while value 2 selects a breadth first incremen-

tal specialization. The default is selected by the --enable-incremental

configure option. For more information we refer to Verdoolaege (2005,

Section 4.4.3).

2.3 Data Structures for Quasi-polynomials

Internally, we do not represent our quasi-polynomials as step-polynomials, but instead

as polynomials of fractional parts of degree-1 polynomials. However, we also allow our

quasi-polynomials to be represented as polynomials with periodic numbers for coeffi-

cients, similarly to Loechner (1999). By default, the current version of barvinok uses

fractionals, but this can be changed through the --disable-fractional config-

ure option. When this option is specified, the periodic numbers are represented as an

explicit enumeration using the periodic type. A quasi-polynomial based on fractional

parts can also be converted to an actual step-polynomial using evalue frac2floor,

but this is not fully supported yet.

For reasons of compatibility,1 we shoehorned our representations for piecewise

quasi-polynomials into the existing data structures. To this effect, we introduced four

new types, fractional, relation, partition and flooring.

typedef enum { polynomial, periodic, evector, fractional,

relation, partition, flooring } enode_type;

1Also known as laziness.
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type polynomial

size 3

pos 1

arr[0]
d 2

x.n 5

arr[1]
d 1

x.n 3

arr[2]
d 0

x.p

type fractional

size 3

pos -1

arr[0]
d 0

x.p

arr[1]
d 1

x.n 1

arr[2]
d 1

x.n 2

fractional

3

-1

0

type polynomial

size 2

pos 1

arr[0]
d 1

x.n 0

arr[1]
d 2

x.n 1

enode enode

enode

Figure 2.4: The quasi-polynomial
(

1 + 2
{

p

2

})

p2 + 3p + 5
2
.

The field pos is not used in most of these additional types and is therefore set to -1.

The types fractional and flooring represent polynomial expressions in a frac-

tional part or a floor respectively. The generator is stored in arr[0], while the coeffi-

cients are stored in the remaining array elements. That is, an enode of type fractional

represents

arr[1] + arr[2]{arr[0]} + arr[3]{arr[0]}2 + · · · + arr[l-1]{arr[0]}l−2.

An enode of type flooring represents

arr[1] + arr[2]⌊arr[0]⌋ + arr[3]⌊arr[0]⌋2 + · · · + arr[l-1]⌊arr[0]⌋l−2.

Example 2.3 The internal representation of the quasi-polynomial

(

1 + 2

{
p

2

})

p2 + 3p +
5

2

is shown in Figure 2.4.

The relation type is used to represent strides. In particular, if the value of size

is 2, then the value of a relation is (in pseudo-code):

(value(arr[0]) == 0) ? value(arr[1]) : 0
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If the size is 3, then the value is:

(value(arr[0]) == 0) ? value(arr[1]) : value(arr[2])

The type of arr[0] is typically fractional.

Finally, the partition type is used to represent piecewise quasi-polynomials.

We prefer to encode this information inside evalues themselves rather than using

Enumerations since we want to perform the same kinds of operations on both quasi-

polynomials and piecewise quasi-polynomials. An enode of type partition may

not be nested inside another enode. The size of the array is twice the number of

“chambers”. Pointers to chambers are stored in the even slots, whereas pointer to the

associated quasi-polynomials are stored in the odd slots. To be able to store pointers to

chambers, the definition of evalue was changed as follows.

typedef struct _evalue {

Value d; /* denominator */

union {

Value n; /* numerator (if denominator > 0) */

struct _enode *p; /* pointer (if denominator == 0) */

Polyhedron *D; /* domain (if denominator == -1) */

} x;

} evalue;

Note that we allow a “chamber” to be a union of polyhedra as discussed in Verdoolaege

(2005, Section 4.5.1). Chambers with extra variables, i.e., those of Verdoolaege (2005,

Section 4.6.5), are only partially supported. The field pos is set to the actual dimension,

i.e., the number of parameters.

2.4 Operations on Quasi-polynomials

In this section we discuss some of the more important operations on evalues provided

by the barvinok library. Some of these operations are extensions of the functions from

PolyLib with the same name.

Most of these operation are also provided by isl on isl pw qpolynomials, which

are set to replace evalues. Use isl pw qpolynomial from evalue to convert from

evalues to isl pw qpolynomials.

__isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_from_evalue(

__isl_take isl_space *dim, const evalue *e);

void eadd(const evalue *e1,evalue *res);

void emul(const evalue *e1, evalue *res);

The functions eadd and emul takes two (pointers to) evalues e1 and res and com-

putes their sum and product respectively. The result is stored in res, overwriting (and

deallocating) the original value of res. It is an error if exactly one of the arguments of

eadd is of type partition (unless the other argument is 0). The addition and multipli-

cation operations are described in Verdoolaege (2005, Section 4.5.1) and Verdoolaege

(2005, Section 4.5.2) respectively.

28



The function eadd is an extension of the function new eadd from Seghir (2002).

Apart from supporting the additional types from Section 2.3, the new version also

additionally imposes an order on the nesting of different enodes. Without such an

ordering, evalues could be constructed representing for example

(0y0 + (0x0 + 1x1)y1)x0 + (0y0 − 1y1)x1,

which is just a funny way of saying 0.

void eor(evalue *e1, evalue *res);

The function eor implements the union operation from Verdoolaege (2005, Section 4.5.3).

Both arguments are assumed to correspond to indicator functions.

evalue *esum(evalue *E, int nvar);

evalue *evalue_sum(evalue *E, int nvar, unsigned MaxRays);

The function esum has been superseded by evalue sum. The function evalue sum

performs the summation operation from Verdoolaege (2005, Section 4.5.4). The piece-

wise step-polynomial represented by E is summated over its first nvar variables. Note

that E must be zero or of type partition. The function returns the result in a newly

allocated evalue. Note also that E needs to have been converted from fractionals

to floorings using the function evalue frac2floor.

void evalue_frac2floor(evalue *e);

This function also ensures that the arguments of the floorings are positive in the

relevant chambers. It currently assumes that the argument of each fractional in the

original evalue has a minimum in the corresponding chamber.

double compute_evalue(const evalue *e, Value *list_args);

Value *compute_poly(Enumeration *en,Value *list_args);

evalue *evalue_eval(const evalue *e, Value *values);

The functions compute evalue, compute poly and evalue eval evaluate a (piece-

wise) quasi-polynomial at a certain point. The argument list_args points to an

array of Values that is assumed to be long enough. The double return value of

compute evalue is inherited from PolyLib.

void print_evalue(FILE *DST, const evalue *e, char **pname);

The function print evalue dumps a human-readable representation to the stream

pointed to by DST. The argument pname points to an array of character strings repre-

senting the parameter names. The array is assumed to be long enough.

int eequal(const evalue *e1, const evalue *e2);

The function eequal return true (1) if its two arguments are structurally identical. I.e.,

it does not check whether the two (piecewise) quasi-polynomial represent the same

function.
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void reduce_evalue (evalue *e);

The function reduce evalue performs some simplifications on evalues. Here, we

only describe the simplifications that are directly related to the internal representation.

Some other simplifications are explained in Verdoolaege (2005, Section 4.7.2). If the

highest order coefficients of a polynomial, fractional or flooring are zero (pos-

sibly after some other simplifications), then the size of the array is reduced. If only

the constant term remains, i.e., the size is reduced to 1 for polynomial or to 2 for the

other types, then the whole node is replaced by the constant term. Additionally, if the

argument of a fractional has been reduced to a constant, then the whole node is re-

placed by its partial evaluation. A relation is similarly reduced if its second branch

or both its branches are zero. Chambers with zero associated quasi-polynomials are

discarded from a partition.

2.5 Generating Functions

The representation of rational generating functions uses some basic types from the

NTL library (Shoup 2004) for representing arbitrary precision integers (ZZ) as well as

vectors (vec ZZ) and matrices (mat ZZ) of such integers. We further introduces a type

QQ for representing a rational number and use vectors (vec QQ) of such numbers.

struct QQ {

ZZ n;

ZZ d;

};

NTL_vector_decl(QQ,vec_QQ);

Each term in a rational generating function is represented by a short rat structure.

struct short_rat {

struct {

/* rows: terms in numerator */

vec_QQ coeff;

mat_ZZ power;

} n;

struct {

/* rows: factors in denominator */

mat_ZZ power;

} d;

};

The fields n and d represent the numerator and the denominator respectively. Note that

in our implementation we combine terms with the same denominator. In the numerator,

each element of coeff and each row of power represents a single such term. The

vector coeff contains the rational coefficients αi of each term. The columns of power

correspond to the powers of the variables. In the denominator, each row of power

corresponds to the power bi j of a factor in the denominator.
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n.coeff 3 2

2 1

n.power 2 3

5 -7

d.power 1 -3

0 2

short rat

Figure 2.6: Representation of
(

3
2

x2
0
x3

1
+ 2 x5

0
x−7

1

)

/
(

(1 − x0x−3
1

)(1 − x2
1
)
)

.

Example 2.5 Figure 2.6 shows the internal representation of

3
2

x2
0
x3

1
+ 2 x5

0
x−7

1

(1 − x0x−3
1

)(1 − x2
1
)
.

The whole rational generating function is represented by a gen fun structure.

typedef std::set<short_rat *,

short_rat_lex_smaller_denominator > short_rat_list;

struct gen_fun {

short_rat_list term;

Polyhedron *context;

void add(const QQ& c, const vec_ZZ& num, const mat_ZZ& den);

void add(short_rat *r);

void add(const QQ& c, const gen_fun *gf,

barvinok_options *options);

void substitute(Matrix *CP);

gen_fun *Hadamard_product(const gen_fun *gf,

barvinok_options *options);

void print(std::ostream& os,

unsigned int nparam, char **param_name) const;

operator evalue *() const;

ZZ coefficient(Value* params, barvinok_options *options) const;

void coefficient(Value* params, Value* c) const;

gen_fun(Polyhedron *C);

gen_fun(Value c);

gen_fun(const gen_fun *gf);

˜gen_fun();

};

A new gen fun can be constructed either as empty rational generating function (possi-

bly with a given context C), as a copy of an existing rational generating function gf, or
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as constant rational generating function with value for the constant term specified by c.

The first gen fun::add method adds a new term to the rational generating function,

described by the coefficient c, the numerator num and the denominator den. It makes

all powers in the denominator lexico-positive, orders them in lexicographical order and

inserts the new term in term according to the lexicographical order of the combined

powers in the denominator. The second gen fun::add method adds c times gf to the

rational generating function.

The method gen fun::operator evalue * performs the conversion from rational

generating function to piecewise step-polynomial explained in Verdoolaege (2005, Sec-

tion 4.5.5). The Polyhedron context is the superset of all points where the enumera-

tor is non-zero used during this conversion, i.e., it is the set Q from Verdoolaege (2005,

Equation 4.31). If context is NULL the maximal allowed context is assumed, i.e., the

maximal region with lexico-positive rays.

The method gen fun::coefficient computes the coefficient of the term with power

given by params and stores the result in c. This method performs essentially the same

computations as gen fun::operator evalue *, except that it adds extra equality

constraints based on the specified values for the power.

The method gen fun::substitute performs the monomial substitution specified by

the homogeneous matrix CP that maps a set of “compressed parameters” (Meister 2004)

to the original set of parameters. That is, if we are given a rational generating func-

tion G(z) that encodes the explicit function g(i′), where i′ are the coordinates of the

transformed space, and CP represents the map i = Ai′ + a back to the original space

with coordinates i, then this method transforms the rational generating function to F(x)

encoding the same explicit function f (i), i.e.,

f (i) = f (Ai′ + a) = g(i′).

This means that the coefficient of the term xi = xAi′+a in F(x) should be equal to the

coefficient of the term zi′ in G(z). In other words, if

G(z) =
∑

i

ǫi
zvi

∏

j(1 − zbi j )

then

F(x) =
∑

i

ǫi
xAvi+a

∏

j(1 − xAbi j )
.

The method gen fun::Hadamard product computes the Hadamard product of the

current rational generating function with the rational generating function gf, as ex-

plained in Verdoolaege (2005, Section 4.5.2).

2.6 Counting Functions

Our library provides essentially three different counting functions: one for non-parametric

polytopes, one for parametric polytopes and one for parametric sets with existential

variables. The old versions of these functions have a “MaxRays” argument, while the

new versions have a more general barvinok options argument. For more informa-

tion on barvinok options, see Section 2.2.
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void barvinok_count(Polyhedron *P, Value* result,

unsigned NbMaxCons);

void barvinok_count_with_options(Polyhedron *P, Value* result,

struct barvinok_options *options);

The function barvinok count or barvinok count with options enumerates the

non-parametric polytope P and returns the result in the Value pointed to by result,

which needs to have been allocated and initialized. If P is a union, then only the first set

in the union will be taken into account. For the meaning of the argument NbMaxCons,

see the discussion on MaxRays in Section 2.2.

The function barvinok enumerate for enumerating parametric polytopes was

meant to be a drop-in replacement of PolyLib’s Polyhedron Enumerate function.

Unfortunately, the latter has been changed to accept an extra argument in recent ver-

sions of PolyLib as shown below.

Enumeration* barvinok_enumerate(Polyhedron *P, Polyhedron* C,

unsigned MaxRays);

extern Enumeration *Polyhedron_Enumerate(Polyhedron *P,

Polyhedron *C, unsigned MAXRAYS, char **pname);

The argument MaxRays has the same meaning as the argument NbMaxCons above.

The argument P refers to the (d + n)-dimensional polyhedron defining the parametric

polytope. The argument C is an n-dimensional polyhedron containing extra constraints

on the parameter space. Its primary use is to indicate how many of the dimensions in

P refer to parameters as any constraint in C could equally well have been added to P

itself. Note that the dimensions referring to the parameters should appear last. If either

P or C is a union, then only the first set in the union will be taken into account. The

result is a newly allocated Enumeration. As an alternative we also provide a function

(barvinok enumerate ev or barvinok enumerate with options) that returns an

evalue.

evalue* barvinok_enumerate_ev(Polyhedron *P, Polyhedron* C,

unsigned MaxRays);

evalue* barvinok_enumerate_with_options(Polyhedron *P,

Polyhedron* C, struct barvinok_options *options);

For enumerating parametric sets with existentially quantified variables, we provide

two functions: barvinok enumerate e, and barvinok enumerate isl.

evalue* barvinok_enumerate_e(Polyhedron *P,

unsigned exist, unsigned nparam, unsigned MaxRays);

evalue* barvinok_enumerate_e_with_options(Polyhedron *P,

unsigned exist, unsigned nparam,

struct barvinok_options *options);

evalue *barvinok_enumerate_isl(Polyhedron *P,

unsigned exist, unsigned nparam,

struct barvinok_options *options);

evalue *barvinok_enumerate_scarf(Polyhedron *P,
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unsigned exist, unsigned nparam,

struct barvinok_options *options);

The first function tries the simplification rules from Verdoolaege (2005, Section 4.6.2)

before resorting to the method based on Parametric Integer Programming (PIP) from

Verdoolaege (2005, Section 4.6.3). The second function immediately applies the tech-

nique from Verdoolaege (2005, Section 4.6.3). The argument exist refers to the num-

ber of existential variables, whereas the argument nparam refers to the number of pa-

rameters. The order of the dimensions in P is: counted variables first, then existential

variables and finally the parameters. The function barvinok enumerate scarf per-

forms the same computation as the function barvinok enumerate scarf series

below, but produces an explicit representation instead of a generating function.

gen_fun * barvinok_series(Polyhedron *P, Polyhedron* C,

unsigned MaxRays);

gen_fun * barvinok_series_with_options(Polyhedron *P,

Polyhedron* C, barvinok_options *options);

gen_fun *barvinok_enumerate_e_series(Polyhedron *P,

unsigned exist, unsigned nparam,

barvinok_options *options);

gen_fun *barvinok_enumerate_scarf_series(Polyhedron *P,

unsigned exist, unsigned nparam,

barvinok_options *options);

The function barvinok series or barvinok series with options enumerates para-

metric polytopes in the form of a rational generating function. The polyhedron P is

assumed to have only revlex-positive rays.

The function barvinok enumerate e series computes a generating function for the

number of point in the parametric set defined by P with exist existentially quantified

variables using the projection theorem, as explained in subsection 5.25. The function

barvinok enumerate scarf series computes a generating function for the number

of point in the parametric set defined by Pwith exist existentially quantified variables,

which is assumed to be 2. This function implements the technique of Scarf and Woods

(2006) using the neighborhood complex description of Scarf (1981). It is currently re-

stricted to problems with 3 or 4 constraints involving the existentially quantified vari-

ables.

2.7 Auxiliary Functions

In this section we briefly mention some auxiliary functions available in the barvinok

library.

void Polyhedron_Polarize(Polyhedron *P);

The function Polyhedron Polarize polarizes its argument and is explained in Ver-

doolaege (2005, Section 4.4.2).

int unimodular_complete(Matrix *M, int row);
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The function unimodular complete extends the first row rows of M with an integral

basis of the orthogonal complement as explained in Section 5.7. Returns non-zero if

the resulting matrix is unimodular.

int DomainIncludes(Polyhedron *D1, Polyhedron *D2);

The function DomainIncludes extends the function PolyhedronIncludes provided

by PolyLib to unions of polyhedra. It checks whether every polyhedron in the union

D2 is included in some polyhedron of D1.

Polyhedron *DomainConstraintSimplify(Polyhedron *P,

unsigned MaxRays);

The value returned by DomainConstraintSimplify is a pointer to a newly allocated

Polyhedron that contains the same integer points as its first argument but possibly has

simpler constraints. Each constraint g〈a, x〉 ≥ c is replaced by 〈a, x〉 ≥
⌈

c
g

⌉

, where g

is the greatest common divisor (gcd) of the coefficients in the original constraint. The

Polyhedron pointed to by P is destroyed.

Polyhedron* Polyhedron_Project(Polyhedron *P, int dim);

The function Polyhedron Project projects P onto its last dim dimensions.

Matrix *left_inverse(Matrix *M, Matrix **Eq);

The left inverse function computes the left inverse of M as explained in Section 5.6.

Matrix *Polyhedron_Reduced_Basis(Polyhedron *P,

struct barvinok_options *options);

Polyhedron Reduced Basis computes a generalized reduced basis of P, which is as-

sumed to be a polytope, using the algorithm of Cook et al. (1993). See subsection 5.20

for more information. The basis vectors are stored in the rows of the matrix returned.

Vector *Polyhedron_Sample(Polyhedron *P,

struct barvinok_options *options);

Polyhedron Sample returns an integer point of P or NULL if P contains no integer

points. The integer point is found using the algorithm of Cook et al. (1993) and uses

Polyhedron Reduced Basis to compute the reduced bases. See subsection 5.20 for

more information.
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3 Applications included in the barvinok distribution

This section describes some application programs provided by the barvinok library,

available from https://barvinok.sourceforge.io/. For compilation instructions

we refer to the README file included in the distribution.

Common option to all programs:

--version -V print version

--help -? list available options

3.1 barvinok count

The program barvinok count enumerates a non-parametric polytope. It takes one

polytope in PolyLib notation as input and prints the number of integer points in

the polytope. The PolyLib notation corresponds to the internal representation of

Polyhedrons as explained in Section 2.1. The first line of the input contains the num-

ber of rows and the number of columns in the Constraint matrix. The rest of the

input is composed of the elements of the matrix. Recall that the number of columns

is two more than the number of variables, where the extra first columns is one or zero

depending on whether the constraint is an inequality (≥ 0) or an equality (= 0). The

next columns contain the coefficients of the variables and the final column contains the

constant in the constraint. E.g., the set S = { s | s ≥ 0 ∧ 2s ≤ 13 } from Verdoolaege

(2005, Example 38 on page 134) corresponds to the following input and output.

> cat S

2 3

1 1 0

1 -2 13

> ./barvinok_count < S

POLYHEDRON Dimension:1

Constraints:2 Equations:0 Rays:2 Lines:0

Constraints 2 3

Inequality: [ 1 0 ]

Inequality: [ -2 13 ]

Rays 2 3

Vertex: [ 0 ]/1

Vertex: [ 13 ]/2

7

Note that if you use PolyLib version 5.22.0 or newer then the output may look slightly

different as the computation of the Raysmay have been postponed to a later stage. The

program latte2polylib.pl can be used to convert a polytope from LattE (De Loera

et al. 2003) notation to PolyLib notation.

As an alternative to the constraints based input, the input polytope may also be spec-

ified by its Ray matrix. The first line of the input contains the single word vertices.

The second line contains the number of rows and the number of columns in the Ray

matrix. The rest of the input is composed of the elements of the matrix. Recall that
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the number of columns is two more than the number of variables, where the extra first

columns is one or zero depending on whether the ray is a line or not. The next columns

contain the numerators of the coordinates and the final column contains the denomina-

tor of the vertex or 0 for a ray. E.g., the above set can also be described as

vertices

2 3

1 0 1

1 13 2

3.2 barvinok enumerate

The program barvinok enumerate enumerates a parametric polytope as a piecewise

step-polynomial or rational generating function. It takes two polytopes in PolyLib

notation as input, optionally followed by a list of parameter names. The two polytopes

refer to arguments P and C of the corresponding function. (See Section 2.6.) The

following example was taken by Loechner (1999) from Loechner (1997, Chapter II.2).

> cat loechner

# Dimension of the matrix:

7 7

# Constraints:

# i j k P Q cte

1 1 0 0 0 0 0 # 0 <= i

1 -1 0 0 1 0 0 # i <= P

1 0 1 0 0 0 0 # 0 <= j

1 1 -1 0 0 0 0 # j <= i

1 0 0 1 0 0 0 # 0 <= k

1 1 -1 -1 0 0 0 # k <= i-j

0 1 1 1 0 -1 0 # Q = i + j + k

# 2 parameters, no constraints.

0 4

> ./barvinok_enumerate < loechner

POLYHEDRON Dimension:5

Constraints:6 Equations:1 Rays:5 Lines:0

Constraints 6 7

Equality: [ 1 1 1 0 -1 0 ]

Inequality: [ 0 1 1 1 -1 0 ]

Inequality: [ 0 1 0 0 0 0 ]

Inequality: [ 0 0 1 0 0 0 ]

Inequality: [ 0 -2 -2 0 1 0 ]

Inequality: [ 0 0 0 0 0 1 ]

Rays 5 7

Ray: [ 1 0 1 1 2 ]
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Ray: [ 1 1 0 1 2 ]

Vertex: [ 0 0 0 0 0 ]/1

Ray: [ 0 0 0 1 0 ]

Ray: [ 1 0 0 1 1 ]

POLYHEDRON Dimension:2

Constraints:1 Equations:0 Rays:3 Lines:2

Constraints 1 4

Inequality: [ 0 0 1 ]

Rays 3 4

Line: [ 1 0 ]

Line: [ 0 1 ]

Vertex: [ 0 0 ]/1

- P + Q >= 0

2P - Q >= 0

1 >= 0

( -1/2 * Pˆ2 + ( 1 * Q + 1/2 )

* P + ( -3/8 * Qˆ2 + ( -1/2 * {( 1/2 * Q + 0 )

} + 1/4 )

* Q + ( -5/4 * {( 1/2 * Q + 0 )

} + 1 )

)

)

Q >= 0

P - Q -1 >= 0

1 >= 0

( 1/8 * Qˆ2 + ( -1/2 * {( 1/2 * Q + 0 )

} + 3/4 )

* Q + ( -5/4 * {( 1/2 * Q + 0 )

} + 1 )

)

The output corresponds to






− 1
2
P2 + PQ + 1

2
P − 3

8
Q2 +

(
1
4
− 1

2

{
1
2
Q
})

Q + 1 − 5
4

{
1
2
Q
}

if P ≤ Q ≤ 2P
1
8
Q2 +

(
3
4
− 1

2

{
1
2
Q
})

− 5
4

{
1
2
Q
}

if 0 ≤ Q ≤ P − 1.

The following is an example of Petr Lisonĕk.

> cat petr

4 6

1 -1 -1 -1 1 0

1 1 -1 0 0 0

1 0 1 -1 0 0

1 0 0 1 0 -1
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0 3

n

> ./barvinok_enumerate --series < petr

POLYHEDRON Dimension:4

Constraints:5 Equations:0 Rays:5 Lines:0

Constraints 5 6

Inequality: [ -1 -1 -1 1 0 ]

Inequality: [ 1 -1 0 0 0 ]

Inequality: [ 0 1 -1 0 0 ]

Inequality: [ 0 0 1 0 -1 ]

Inequality: [ 0 0 0 0 1 ]

Rays 5 6

Ray: [ 1 1 1 3 ]

Ray: [ 1 1 0 2 ]

Ray: [ 1 0 0 1 ]

Ray: [ 0 0 0 1 ]

Vertex: [ 1 1 1 3 ]/1

POLYHEDRON Dimension:1

Constraints:1 Equations:0 Rays:2 Lines:1

Constraints 1 3

Inequality: [ 0 1 ]

Rays 2 3

Line: [ 1 ]

Vertex: [ 0 ]/1

(nˆ3)/((1-n) * (1-n) * (1-nˆ2) * (1-nˆ3))

Options:

--floor -f convert fractionals to floorings

--convert -c convert fractionals to periodics

--series -s compute rational generating function instead of piecewise

step-polynomial

--explicit -e convert computed rational generating function to a piecewise

step-polynomial

3.3 barvinok enumerate e

The program barvinok enumerate e enumerates a parametric projected set. It takes

a single polytope in PolyLib notation as input, followed by two lines indicating the

number or existential variables and the number of parameters and optionally followed

by a list of parameter names. The syntax for the line indicating the number of existen-

tial variables is the letter E followed by a space and the actual number. For indicating

the number of parameters, the letter P is used. The following example corresponds to

Verdoolaege (2005, Example 36 on page 129).

> cat projected

5 6
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# k i j p cst

1 0 1 0 0 -1

1 0 -1 0 0 8

1 0 0 1 0 -1

1 0 0 -1 1 0

0 -1 6 9 0 -7

E 2

P 1

> ./barvinok_enumerate_e <projected

POLYHEDRON Dimension:4

Constraints:5 Equations:1 Rays:4 Lines:0

Constraints 5 6

Equality: [ 1 -6 -9 0 7 ]

Inequality: [ 0 1 0 0 -1 ]

Inequality: [ 0 -1 0 0 8 ]

Inequality: [ 0 0 1 0 -1 ]

Inequality: [ 0 0 -1 1 0 ]

Rays 4 6

Vertex: [ 50 8 1 1 ]/1

Ray: [ 0 0 0 1 ]

Ray: [ 9 0 1 1 ]

Vertex: [ 8 1 1 1 ]/1

exist: 2, nparam: 1

P -3 >= 0

1 >= 0

( 3 * P + 10 )

P -1 >= 0

- P + 2 >= 0

( 8 * P + 0 )

Options:

--floor -f convert fractionals to floorings

--convert -c convert fractionals to periodics

--omega -o use Omega as a preprocessor

--isl -i call barvinok enumerate isl instead of

barvinok enumerate e

3.4 barvinok union

The program barvinok union enumerates a union of parametric polytopes. It takes as

input the number of parametric polytopes in the union, the polytopes in combined data

and parameter space in PolyLib notation, the context in parameter space in PolyLib

notation and optionally a list of parameter names.
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Options:

--series -s compute rational generating function instead of piecewise

step-polynomial

3.5 barvinok ehrhart

The program barvinok ehrhart computes the Ehrhart quasi-polynomial of a poly-

tope P, i.e., a quasi-polynomial in n that evaluates to the number of integer points in the

dilation of P by a factor n. The input is the same as that of barvinok count, except

that it may be followed by the variable name. The functionality is the same as running

barvinok enumerate on the cone over P placed at n = 1.

Options:

--floor -f convert fractionals to floorings

--convert -c convert fractionals to periodics

--series -s compute Ehrhart series instead of Ehrhart quasi-polynomial

3.6 polyhedron sample

The program polyhedron sample takes a polytope in PolyLib notation and prints an

integer point in the polytope if there is one. The point is computed using Polyhedron Sample.

3.7 polytope scan

The program polytope scan takes a polytope in PolyLib notation and prints a list of

all integer points in the polytope. Unless the --direct options is given, the order is

based on the reduced basis computed with Polyhedron Reduced Basis.

Options:

--direct -d list the points in the lexicographical order

3.8 lexmin

The program lexmin implements an algorithm for performing PIP based on rational

generating functions and provides an alternative for the technique of Feautrier (1988),

which is based on cutting planes (Gomory 1963). The input is the same as that of the

example program from piplib (Feautrier 2006), except that the value for the “big

parameter” needs to be −1, since there is no need for big parameters, and it does not

read any options from the input file.

3.9 barvinok summate

Given a piecewise step-polynomial in isl format, the program barvinok summate

computes the sum of the piecewise quasi-polynomial evaluated in all (integer) values of

the variables. The result is an expression in the parameters. Note that barvinok enumerate

and barvinok enumerate e can produce piecewise step-polynomials when given the

-I option, but they will have only parameters and no variables.

For example
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> cat square_p3.pwqp

[n] -> { [x, y] -> x * y :

n >= -9 + 3x and x >= 2 and y >= 4 and y <= 5 }

> ./barvinok_summate < square_p3.pwqp

[n] -> { (45 + 63/2 * [(n)/3] + 9/2 * [(n)/3]ˆ2) : n >= -3 }

Options:

--summation specifies which summation method to use; box refers to the

method of Verdoolaege (2005, Section 4.5.4), bernoulli

refers to the method of subsection 5.13, euler refers to

the method of subsection 5.14, and laurent refers to the

method of subsection 5.16.

3.10 barvinok bound

Given a piecewise step-polynomial in isl format, the program barvinok bound com-

putes an upper bound (or lower bound) for the values attained by the piecewise quasi-

polynomial over all (integer) values of the variables. The result is an expression in the

parameters. Note that barvinok enumerate and barvinok enumerate e can pro-

duce piecewise step-polynomials when given the -I option, but they will have only

parameters and no variables.

> cat devos.pwqp

[U] -> { [V] -> ((1/3 * U + 2/3 * V) - [(U + 2V)/3]) :

2V >= -3 - U and 2V <= -U and U >= 0 and U <= 10 }

> ./barvinok_bound < devos.pwqp

[U] -> { max(2/3) : U <= 10 and U >= 0 }

Options:

--lower compute lower bound instead of upper bound

3.11 polytope minimize

The program polytope minimize has been superseded by isl’s isl polyhedron minimize.

3.12 polyhedron integer hull

The program polyhedron integer hull takes a polyhedron in PolyLib notation

and prints its integer hull. The integer hull is computed as explained in subsection 5.21.

3.13 polytope lattice width

The program polytope lattice width computes the lattice width of a parametric

polytope. The input is the same as that of barvinok enumerate. The lattice width is

computed as explained in subsection 5.23.

Options:

--direction -d print the lattice width directions
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4 polymake clients

The barvinok distribution includes a couple of polymake (Gawrilow and Joswig

2000) clients in the polymake subdir.

• lattice points <file>

Computes the property LATTICE POINTS of a polytope, the number of lattice

points in the polytope.

• h star vector <file>

Computes the property H STAR VECTOR of a lattice polytope, the h∗-vector of the

polytope (Stanley 1993).
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5 Implementation details

5.1 An interior point of a polyhedron

We often need a point that lies in the interior of a polyhedron. The function inner point

implements the following algorithm. Each polyhedron P can be written as the sum of

a polytope P′ and a cone C (the recession cone or characteristic cone of P). Adding a

positive multiple of the sum of the extremal rays of C to the barycenter

1

N

∑

i

vi(p)

of P′, where N is the number of vertices, results in a point in the interior of P.

5.2 The integer points in the fundamental parallelepiped of a sim-

ple cone

This section is based on Barvinok (1992, Lemma 5.1) and De Loera and Köppe (2006).

In this section we will deal exclusively with simple cones, i.e. d-dimensional cones

with d extremal rays and d facets. Some of the facets of these cones may be open.

Since we will mostly be dealing with cones in their explicit representation, we will have

occasion to speak of “open rays”, by which we will mean that the facet not containing

the ray is open. (There is only one such facet because the cone is simple.)

Definition 5.1 (Fundamental parallelepiped) Let K = v+pos {ui } be a closed (shifted)

cone, then the fundamental parallelepiped Π of K is

Π = v +






∑

i

αiui | 0 ≤ αi < 1





.

If some of the rays ui of K are open, then the constraints on the corresponding coeffi-

cient αi are such that 0 < αi ≤ 1.

Lemma 5.2 (Integer points in the fundamental parallelepiped of a simple cone) Let

K = v+pos { ui } be a closed simple cone and let A be the matrix with the generators ui

of K as rows. Furthermore let VAW−1 = S = diag s be the Smith Normal Form (SNF)

of A. Then the integer points in the fundamental parallelepiped of K are given by

wT = vT +
{

(kT W − vT )A−1
}

A (5.3)

= vT +

d∑

i=1






〈

d∑

j=1

k jw
T

j − vT ,u∗i 〉






uT

i ,

where u∗
i

are the columns of A−1 and k j ∈ Z ranges over 0 ≤ k j < s j.
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• •

Figure 5.4: The integer points in the fundamental parallelepiped of K

Proof Since 0 ≤ {x} < 1, it is clear that each such w lies inside the fundamental

parallelepiped. Furthermore,

wT = vT +
{

(kT W − vT )A−1
}

A

= vT +
(

(kT W − vT )A−1 −
⌊

(kT W − vT )A−1
⌋)

A

= kT W
︸︷︷︸

∈Z1×d

−
⌊

(kT W − vT )A−1
⌋

︸               ︷︷               ︸

∈Z1×d

A
︸︷︷︸

∈Zd×d

∈ Z1×d.

Finally, if two such w are equal, i.e., w1 = w2, then

0T = wT

1 − wT

2 = kT

1W − kT

2W + pT A

=
(

kT

1 − kT

2

)

W + pT V−1S W,

with p ∈ Zd, or k1 ≡ k2 mod s, i.e., k1 = k2. Since det S = | det A|, we obtain all

points in the fundamental parallelepiped by taking all k ∈ Zd satisfying 0 ≤ k j < s j.

�

If the cone K is not closed then the coefficients of the open rays should be in (0, 1]

rather than in [0, 1). In (5.3), we therefore need to replace the fractional part {x} =

x − ⌊x⌋ by {{x}} = x − ⌈x − 1⌉ for the open rays.

Example 5.5 Let K be the cone

K =

[

0

0

]

+ pos

{ [

2

1

]

,

[

0

−1

] }

,

45



shown in Figure 5.4. Then

A =

[

2 1

0 −1

]

A−1 =

[

1/2 1/2

0 −1

]

and [

1 0

1 1

] [

2 1

0 −1

]

=

[

1 0

0 2

] [

2 1

1 0

]

.

We have | det A| = det S = 2 and kT

1
=

[

0 0
]

and kT

2
=

[

0 1
]

. Therefore,

wT

1 =

{
[

0 0
]
[

2 1

1 0

] [

1/2 1/2

0 −1

]} [

2 1

0 −1

]

=
[

0 0
]

and

wT

2 =

{
[

0 1
]
[

2 1

1 0

] [

1/2 1/2

0 −1

]} [

2 1

0 −1

]

=
[

1/2 1/2
]
[

2 1

0 −1

]

=
[

1 0
]

.

5.3 Barvinok’s decomposition of simple cones in primal space

As described by De Loera et al. (2004), the first implementation of Barvinok’s count-

ing algorithm applied Barvinok’s decomposition (Barvinok 1994) in the dual space.

Brion’s polarization trick (Brion 1988) then ensures that you do not need to worry

about lower-dimensional faces in the decomposition. Another way of avoiding the

lower-dimensional faces, in the primal space, is to perturb the vertex of the cone such

that none of the lower-dimensional face encountered contain any integer points (Köppe

2007). In this section, we describe another technique that is based on allowing some of

the facets of the cone to be open.

The basic step in Barvinok’s decomposition is to replace a d-dimensional simple

cone K = pos { ui }
d
i=1 ⊂ Q

d by a signed sum of (at most) d cones K j with a smaller

determinant (in absolute value). The cones are obtained by successively replacing each

generator of K by an appropriately chosen w =
∑d

i=1 αiui, i.e.,

K j = pos
(

{ ui }
d
i=1 \ {u j } ∪ {w }

)

. (5.6)

To see that we can use these K j to perform a decomposition, rearrange the ui such that

for all 1 ≤ i ≤ k we have αi < 0 and for all k + 1 ≤ i ≤ d′ we have αi > 0, with d − d′

the number of zero αi. We may assume k < d′; otherwise replace w ∈ B by −w ∈ B.

We have

w +

k∑

i=1

(−αi)ui =

d′∑

i=k+1

αiui

or
k∑

i=0

βiui =

d′∑

i=k+1

αiui, (5.7)
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Figure 5.11: Possible locations of w with respect to the rays of a 3-dimensional cone.

The figure shows a section of the cones.

with u0 = w, β0 = 1 and βi = −αi > 0 for 1 ≤ i ≤ k. Any two u j and ul on the same

side of the equality are on opposite sides of the linear hull H of the other uis since there

exists a convex combination of u j and ul on this hyperplane. In particular, since α j and

αl have the same sign, we have

α j

α j + αl

u j +
αl

α j + αl

ul ∈ H for αiαl > 0. (5.8)

The corresponding cones K j and Kl (with K0 = K) therefore intersect in a common

face F ⊂ H. Let

K′ := pos
(

{ ui }
d
i=1 ∪ {w }

)

,

then any x ∈ K′ lies both in some cone Ki with 0 ≤ i ≤ k and in some cone Ki with

k + 1 ≤ i ≤ d′. (Just subtract an appropriate multiple of Equation (5.7).) The cones

{Ki }
k
i=0

and {Ki }
d′

i=k+1
therefore both form a triangulation of K′ and hence

[

K′
]

= [K] +

k∑

i=1

[Ki] −
∑

j∈J1

[

F j

]

=

d′∑

i=k+1

[Ki] −
∑

j∈J2

[

F j

]

(5.9)

or

[K] =

d′∑

i=1

εi [Ki] +
∑

j

δ j

[

F j

]

, (5.10)

with εi = −1 for 1 ≤ i ≤ k, εi = 1 for k + 1 ≤ i ≤ d′, δ j ∈ {−1, 1} and F j some

lower-dimensional faces. Figure 5.11 shows the possible configurations in the case of

a 3-dimensional cone.

As explained above there are several ways of avoiding the lower-dimensional faces

in (5.10). Here we will apply the following proposition.
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Proposition 5.12 (Köppe and Verdoolaege (2008)) Let

∑

i∈I1

ǫi[Pi] +
∑

i∈I2

δk[Pi] = 0 (5.13)

be a (finite) linear identity of indicator functions of closed polyhedra Pi ⊆ Q
d, where

the polyhedra Pi with i ∈ I1 are full-dimensional and those with i ∈ I2 lower-dimensional.

Let each closed polyhedron be given as

Pi =
{

x | 〈b∗i, j, x〉 ≥ βi, j for j ∈ Ji

}

.

Let y ∈ Qd be a vector such that 〈b∗
i, j
, y〉 , 0 for all i ∈ I1 ∪ I2, j ∈ Ji. For each i ∈ I1,

we define the half-open polyhedron

P̃i =
{

x ∈ Qd | 〈b∗i, j, x〉 ≥ βi, j for j ∈ Ji with 〈b∗i, j, y〉 > 0,

〈b∗i, j, x〉 > βi, j for j ∈ Ji with 〈b∗i, j, y〉 < 0
}

.
(5.14)

Then ∑

i∈I1

ǫi[P̃i] = 0. (5.15)

When applying this proposition to (5.10), we obtain

[

K̃
]

=

d′∑

i=1

εi

[

K̃i

]

, (5.16)

where we start out from a given K̃, which may be K itself, i.e., a fully closed cone,

or the result of a previous application of the proposition, either through a triangulation

(Section 5.4) or a previous decomposition. In either case, a suitable y is available,

either as an interior point of the cone or as the vector used in the previous application

(which may require a slight perturbation if it happens to lie on one of the new facets

of the cones Ki). We are, however, free to construct a new y on each application of

the proposition. In fact, we will not even construct such a vector explicitly, but rather

apply a set of rules that is equivalent to a valid choice of y. Below, we will present

an “intuitive” motivation for these rules. For a more algebraic, shorter, and arguably

simpler motivation we refer to Köppe and Verdoolaege (2008).

The vector y has to satisfy 〈b∗
j
, y〉 > 0 for normals b∗

j
of closed facets and 〈b∗

j
, y〉 < 0

for normals b∗
j

of open facets of K̃. These constraints delineate a non-empty open cone

R from which y should be selected. For some of the new facets of the cones K̃ j, the

cone R will not be cut by the affine hull of the facet. The closedness of these facets

is therefore predetermined by K̃. For the other facets, a choice will have to be made.

To be able to make the choice based on local information and without computing an

explicit vector y, we use the following convention. We first assign an arbitrary total

order to the rays. If (the affine hull of) a facet separates the two rays not on the facet

ui and u j, i.e., αiα j > 0 (5.8), then we choose y to lie on the side of the smallest ray,

according to the chosen order. That is, 〈ñi j, y〉 > 0, for ñi j the normal of the facet
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pointing towards this smallest ray. Otherwise, i.e., if αiα j < 0, the interior of K will

lie on one side of the facet and then we choose y to lie on the other side. That is,

〈ñi j, y〉 > 0, for ñi j the normal of the facet pointing away from the cone K. Figure 5.17

shows some example decompositions with an explicitly marked y.

To see that there is a y satisfying the above constraints, we need to show that R∩ S

is non-empty, with S = {y | 〈ñik jk , y〉 > 0 for all k}. It will be easier to show this set

is non-empty when the ui form an orthogonal basis. Applying a non-singular linear

transformation T does not change the decomposition of w in terms of the ui (i.e., the αi

remain unchanged), nor does this change any of the scalar products in the constraints

that define R∩S (the normals are transformed by
(

T−1
)T

). Finding a vector y ∈ T (R∩S )

ensures that T−1(y) ∈ R ∩ S . Without loss of generality, we can therefore assume for

the purpose of showing that R ∩ S is non-empty that the ui indeed form an orthogonal

basis.

In the orthogonal basis, we have b∗
i
= ui and the corresponding inward normal Ni is

either ui or −ui. Furthermore, each normal of a facet of S of the first type is of the form

ñik jk = akuik − bku jk , with ak, bk > 0 and ik < jk, while for the second type each normal

is of the form ñik jk = −akuik−bku jk , with ak, bk > 0. If ñik jk = akuik−bku jk is the normal

of a facet of S then either (Nik ,N jk ) = (uik ,u jk ) or (Nik ,N jk ) = (−uik ,−u jk ). Otherwise,

the facet would not cut R. Similarly, if ñik jk = −akuik − bku jk is the normal of a facet of

S then either (Nik ,N jk ) = (uik ,−u jk ) or (Nik ,N jk ) = (−uik ,u jk ). Assume now that R ∩ S

is empty, then there exist λk, µi ≥ 0 not all zero such that
∑

k λkñik jk +
∑

l µiNi = 0.

Assume λk > 0 for some facet of the first type. If N jk = −u jk , then −bk can only be

canceled by another facet k′ of the first type with jk = ik′ , but then also N jk′ = −u jk′ .

Since the jk are strictly increasing, this sequence has to stop with a strictly positive

coefficient for the largest u jk in this sequence. If, on the other hand, Nik = uik , then ak

can only be canceled by the normal of a facet k′ of the second kind with ik = jk′ , but

then Nik′ = −uik′ and we return to the first case. Finally, if λk > 0 only for normals of

facets of the second type, then either Nik = −uik or N jk = −u jk and so the coefficient of

one of these basis vectors will be strictly negative. That is, the sum of the normals will

never be zero and the set R ∩ S is non-empty.

For each ray u j of cone Ki, i.e., the cone with ui replaced by w, we now need to

determine whether the facet not containing this ray is closed or not. We denote the

(inward) normal of this cone by ni j. Note that cone K j (if it appears in (5.9), i.e.,

α j , 0) has the same facet opposite ui and its normal n ji will be equal to either ni j or

−ni j, depending on whether we are dealing with an “external” facet, i.e., a facet of K′,

or an “internal” facet. If, on the other hand, α j = 0, then ni j = n0 j. If 〈ni j, y〉 > 0, then

the facet is closed. Otherwise it is open. It follows that the two (or more) occurrences

of external facets are either all open or all closed, while for internal facets, exactly one

is closed.

First consider the facet not containing u0 = w. If αi > 0, then ui and w are on the

same side of the facet and so ni0 = n0i. Otherwise, ni0 = −ni0. Second, if α j = 0, then

replacing ui by w does not change the affine hull of the facet and so ni j = n0 j. Now

consider the case that αiα j < 0, i.e., ui and u j are on the same side of the hyperplane

through the other rays. If we project ui, u j and w onto a plane orthogonal to the ridge

through the other rays, then the possible locations of w with respect to ui and u j are
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Figure 5.17: Examples of decompositions in primal space.
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Figure 5.18: Possible locations of w with respect to ui and u j, projected onto a plane

orthogonal to the other rays, when αiα j < 0.
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Figure 5.19: Possible locations of w with respect to ui and u j, projected onto a plane

orthogonal to the other rays, when αiα j > 0.

shown in Figure 5.18. If both n0i and n0 j are closed then y lies in region 1 and therefore

ni j (as well as n ji) is closed too. Similarly, if both n0i and n0 j are open then so is ni j.

If only one of the facets is closed, then, as explained above, we choose ni j to be open,

i.e., we take y to lie in region 3 or 5. Figure 5.19 shows the possible configurations for

the case that αiα j > 0. If exactly one of n0i and n0 j is closed, then y lies in region 3 or

region 5 and therefore ni j is closed iff n0 j is closed. Otherwise, as explained above, we

choose ni j to be closed if i < j.

The algorithm is summarized in Algorithm 1, where we use the convention that in

cone Ki, ui refers to u0 = w. Note that we do not need any of the rays or normals in

this code. The only information we need is the closedness of the facets in the original

cone and the signs of the αi.

5.4 Triangulation in primal space

As in the case for Barvinok’s decomposition (Section 5.3), we can transform a trian-

gulation of a (closed) cone into closed simple cones into a triangulation of half-open

simple cones that fully partitions the original cone, i.e., such that the half-open sim-
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Algorithm 1 Determine whether the facet opposite u j is closed in Ki.

if α j = 0

closed[Ki][u j] := closed[K̃][u j]

else if i = j

if α j > 0

closed[Ki][u j] := closed[K̃][u j]

else

closed[Ki][u j] := ¬closed[K̃][u j]

else if αiα j > 0

if closed[K̃][ui] = closed[K̃][u j]

closed[Ki][u j] := i < j

else

closed[Ki][u j] := closed[K̃][u j]

else

closed[Ki][u j] := closed[K̃][ui] and closed[K̃][u j]

ple cones do not intersect at their facets. Again, we apply Proposition 5.12 with y an

interior point of the cone (Section 5.1). Note that the interior point y may still inter-

sect some of the internal facets, so we may need to perturb it slightly. In practice, we

apply a lexicographical rule: for such (internal) facets, which always appear in pairs,

we close the one with a lexico-positive normal and open the one with a lexico-negative

normal.

5.5 Multivariate quasi-polynomials as lists of polynomials

There are many definitions for a (univariate) quasi-polynomial. Ehrhart (1977) uses a

definition based on periodic numbers.

Definition 5.20 A rational periodic number U(p) is a function Z→ Q, such that there

exists a period q such that U(p) = U(p′) whenever p ≡ p′ mod q.

Definition 5.21 A (univariate) quasi-polynomial f of degree d is a function

f (n) = cd(n) nd + · · · + c1(n) n + c0,

where ci(n) are rational periodic numbers. I.e., it is a polynomial expression of degree

d with rational periodic numbers for coefficients. The period of a quasi-polynomial is

the lcm of the periods of its coefficients.

Other authors (e.g., Stanley 1986) use the following definition of a quasi-polynomial.

Definition 5.22 A function f : Z → Q is a (univariate) quasi-polynomial of period q

if there exists a list of q polynomials gi ∈ Q[T ] for 0 ≤ i < q such that

f (s) = gi(s) if s ≡ i mod q.

The functions gi are called the constituents.
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In our implementation, we use Definition 5.21, but whereas Ehrhart (1977) uses a

list of q rational numbers enclosed in square brackets to represent periodic numbers, our

periodic numbers are polynomial expressions in fractional parts (Section 2.3). These

fractional parts naturally extend to multivariate quasi-polynomials. The bracketed (“ex-

plicit”) periodic numbers can be extended to multiple variables by nesting them (e.g.,

Loechner 1999).

Definition 5.22 could be extended in a similar way by having a constituent for each

residue modulo a vector period q. However, as pointed out by Woods (2006), this may

not result in the minimum number of constituents. A vector period can be considered as

a lattice with orthogonal generators and the number of constituents is equal to the index

or determinant of that lattice. By considering more general lattices, we can potentially

reduce the number of constituents.

Definition 5.23 A function f : Zn → Q is a (multivariate) quasi-polynomial of period

L if there exists a list of det L polynomials gi ∈ Q[T1, . . . ,Tn] for i in the fundamental

parallelepiped of L such that

f (s) = gi(s) if s ≡ i mod L.

To compute the period lattice from a fractional representation, we compute the

appropriate lattice for each fractional part and then take their intersection. Recall that

the argument of each fractional part is an affine expression in the parameters (〈a,p〉 +

c)/m, with a ∈ Zn and c,m ∈ Z. Such a fractional part is translation invariant over

any (integer) value of p such that 〈a,p〉 + mt = 0, for some t ∈ Z. Solving this

homogeneous equation over the integers (in our implementation, we use PolyLib’s

SolveDiophantine) gives the general solution

[

p

t

]

=

[

U1

U2

]

x for x ∈ Zn.

The matrix U1 ∈ Z
n×n then has the generators of the required lattice as columns. The

constituents are computed by plugging in each integer point in the fundamental par-

allelepiped of the lattice. These points themselves are computed as explained in Sec-

tion 5.2. Note that for computing the constituents, it is sufficient to take any represen-

tative of the residue class. For example, we could take wT = kT W in the notations of

Lemma 5.2.

Example 5.24 (Woods (2006)) Consider the parametric polytope

Ps,t = { x | 0 ≤ x ≤ (s + t)/2 }.

The enumerator of Ps,t is






s
2
+ t

2
+ 1 if





s

t



 ∈





−1 −2

1 0



Z
2 +





0

0





s
2
+ t

2
+ 1

2
if





s

t



 ∈





−1 −2

1 0



Z
2 +





−1

0



.

The corresponding output of barvinok enumerate is
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s + t >= 0

1 >= 0

Lattice:

[[-1 1]

[-2 0]

]

[0 0]

( 1/2 * s + ( 1/2 * t + 1 )

)

[-1 0]

( 1/2 * s + ( 1/2 * t + 1/2 )

)

5.6 Left inverse of an affine embedding

We often map a polytope onto a lower dimensional space to remove possible equalities

in the polytope. These maps are typically represented by the inverse, mapping the co-

ordinates x′ of the lower-dimensional space to the coordinates x of (an affine subspace

of) the original space, i.e.,
[

x

1

]

=

[

T v

0T 1

] [

x′

1

]

,

where, as usual in PolyLib, we work with homogeneous coordinates. To obtain the

transformation that maps the coordinates of the original space to the coordinates of

the lower dimensional space, we need to compute the left inverse of the above affine

embedding, i.e., an A, b and d such that

d

[

x′

1

]

=

[

A b

0T d

] [

x

1

]

To compute this left inverse, we first compute the (right) Hermite Normal Form

(HNF) of T,
[

U1

U2

]

T =

[

H

0

]

.

The left inverse is then simply

[

dH−1U1 −dH−1v

0T d

]

.

We often also want a description of the affine subspace that is the range of the affine

embedding and this is given by

[

U2 −U2v

0T 1

] [

x

1

]

= 0.

This computation is implemented in left inverse.
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5.7 Integral basis of the orthogonal complement of a linear sub-

space

Let M1 ∈ Z
m×n be a basis of a linear subspace. We first extend M1 with zero rows to

obtain a square matrix M′ and then compute the (left) HNF of M′,

[

M1

0

]

=

[

H 0

0 0

] [

Q1

Q2

]

.

The rows of Q2 span the orthogonal complement of the given subspace. Since Q2 can

be extended to a unimodular matrix, these rows form an integral basis.

If the entries on the diagonal of H are all 1 then M1 can be extended to a unimodular

matrix, by concatenating M1 and Q2. The resulting matrix is unimodular, since

[

M1

Q2

]

=

[

H 0

0 In−m,n−m

] [

Q1

Q2

]

.

This method for extending a matrix of which only a few lines are known to a uni-

modular matrix is more general than the method described by Bik (1996), which only

considers extending a matrix given by a single row.

5.8 Ensuring a polyhedron has only revlex-positive rays

The barvinok series with options function and all further gen fun manipula-

tions assume that the effective parameter domain has only revlex-positive rays. When

used to compute rational generating functions, the barvinok enumerate application

will therefore transform the effective parameter domain of a problem if it has revlex-

negative rays. It will then not compute the generating function

f (x) =
∑

p∈Zm

#(Pp ∩ Z
d) xp,

but

g(z) =
∑

p′∈Zn

#(PTp′+t ∩ Z
d) xp′

instead, where p = Tp′ + t, with T ∈ Zm×n and t ∈ Zm, is an affine transformation that

maps the transformed parameter space back to the original parameter space.

First assume that the parameter domain does not contain any lines and that there are

no equalities in the description of Pp that force the values of p for which Pp contains

integer points to lie on a non-standard lattice. Let the effective parameter domain be

given as {p | Ap + c ≥ 0 }, where A ∈ Zs×d of row rank d; otherwise the effective

parameter domain would contain a line. Let H be the (left) HNF of A, i.e.,

A = HQ,

with H lower-triangular with positive diagonal elements and Q unimodular. Let Q̃

be the matrix obtained from Q by reversing its rows, and, similarly, H̃ from H by
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reversing the columns. After performing the transformation p′ = Q̃p, i.e., p = Q̃−1p′,

the transformed parameter domain is given by

{p′ | AQ̃−1p′ + c ≥ 0 }

or

{p′ | H̃p′ + c ≥ 0 }.

The first constraint of this domain is h11 p′m + c1 ≥ 0. A ray with non-zero final co-

ordinate therefore has a positive final coordinate. Similarly, the second constraint is

h22 p′
m−1
+ h21 p′m + c2 ≥ 0. A ray with zero nth coordinate, but non-zero n − 1st coor-

dinate, will therefore have a positive n − 1st coordinate. Continuing this reasoning, we

see that all rays in the transformed domain are revlex-positive.

If the parameter domain does contains lines, but is not restricted to a non-standard

lattice, then the number of points in the parametric polytope is invariant over a trans-

lation along the lines. It is therefore sufficient to compute the number of points in the

orthogonal complement of the linear subspace spanned by the lines. That is, we apply

a prior transformation that maps a reduced parameter domain to this subspace,

p = L⊥p′ =
[

L L⊥
]
[

0

I

]

p′,

where L has the lines as columns, and L⊥ an integral basis for the orthogonal comple-

ment (Section 5.7). Note that the inverse transformation

p′ = L−⊥p =
[

0 I
] [

L L⊥
]−1

p

has integral coefficients since L⊥ can be extended to a unimodular matrix.

If the parameter values p for which Pp contains integer points are restricted to a

non-standard lattice, we first replace the parameters by a different set of parameters

that lie on the standard lattice through “parameter compression”(Meister 2004),

p = Cp′.

The (left) inverse of C can be computed as explained in Section 5.6, giving

p′ = C−Lp.

We have to be careful to only apply this transformation when both the equalities com-

puted in Section 5.6 are satisfied and some additional divisibility constraints. In par-

ticular if aT/d is a row of C−L, with a ∈ Zn′ and d ∈ Z, the transformation can only be

applied to parameter values p such that d divides 〈a,p〉.

The complete transformation is given by

p = CL⊥Q̂−1p′

or

p′ = Q̂L−⊥C−Lp.
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5.9 Parametric Volume Computation

The volume of a (parametric) polytope can serve as an approximation for the number

of integer points in the polytope. We basically follow the description of Rabl (2006)

here, except that we focus on volume computation for linearly parametrized polytopes,

which we exploit to determine the sign of the determinants we compute, as explained

below.

Note first that the vertices of a linearly parametrized polytope are affine expres-

sions in the parameters that may be valid only in parts (chambers) of the parameter

domain. Since the volume computation is based on the (active) vertices, we perform

the computation in each chamber separately. Also note that since the vertices are affine

expressions, it is easy to check whether they belong to a facet.

The volume of a d-simplex, i.e., a d-dimensional polytope with d + 1 vertices, is

relatively easy to compute. In particular, if vi(p), for 0 ≤ i ≤ d, are the (parametric)

vertices of the simplex P then

vol P =
1

d!

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

det





v11(p) − v01(p) v12(p) − v02(p) . . . v1d(p) − v0d(p)

v21(p) − v01(p) v22(p) − v02(p) . . . v2d(p) − v0d(p)
...

...
. . .

...

vd1(p) − v01(p) vd2(p) − v02(p) . . . vdd(p) − v0d(p)





∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

. (5.25)

If P is not a simplex, i.e., N > d + 1, with N the number of vertices of P, then the

standard way of computing the volume of P is to first triangulate P, i.e., subdivide P

into simplices, and then to compute and sum the volumes of the resulting simplices.

One way of computing a triangulation is to compute the barycenter

1

N

∑

i

vi(p)

of P and to perform a subdivision by computing the convex hulls of the barycenter with

each of the facets of P. If a given facet of P is itself a simplex, then this convex hull

is also a simplex. Otherwise the facet is further subdivided. This recursive process

terminates as every 1-dimensional polytope is a simplex.

The triangulation described above is known as the boundary triangulation (Büeler

et al. 2000) and is used by Rabl (2006) in his implementation. The Cohen-Hickey trian-

gulation (Cohen and Hickey 1979; Büeler et al. 2000) is a much more efficient variation

and uses one of the vertices instead of the barycenter. The facets incident on the ver-

tex do not have to be considered in this case because the resulting subpolytopes would

have zero volume. Another possibility is to use a “lifting” triangulation (Lee 1991;

De Loera 1995). In this triangulation, each vertex is assigned a (random) “height” in

an extra dimension. The projection of the “lower envelope” of the resulting polytope

onto the original space results in a subdivision, which is a triangulation with very high

probability.

A complication with the lifting triangulation is that the constraint system of the

lifted polytope will in general not be linearly parameterized, even if the original poly-

tope is. It is, however, sufficient to perform the triangulation for a particular value of the
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parameters inside the chamber since the parametric polytope has the same combinato-

rial structure throughout the chamber. The triangulation obtained for the instantiated

vertices can then be carried over to the corresponding parametric vertices. We only

need to be careful to select a value for the parameters that does not lie on any facet

of the chambers. On these chambers, some of the vertices may coincide. For linearly

parametrized polytopes, it is easy to find a parameter point in the interior of a chamber,

as explained in Section 5.1. Note that this point need not be integer.

A direct application of the above algorithm, using any of the triangulations, would

yield for each chamber a volume expressed as the sum of the absolute values of poly-

nomials in the parameters. To remove the absolute value, we plug in a particular value

of the parameters (not necessarily integer) belonging to the given chamber for which

we know that the volume is non-zero. Again, it is sufficient to take any point in the

interior of the chamber. The sign of the resulting value then determines the sign of the

whole polynomial since polynomials are continuous functions and will not change sign

without passing through zero.

5.10 Maclaurin series division

If P(t) and Q(t) are two Maclaurin series

P(t) = a0 + a1t + a2t2 + · · ·

Q(t) = b0 + b1t + b2t2 + · · · ,

then, as outlined by Henrici (1974, 241–247), we can compute the coefficients cl in

P(t)

Q(t)
=: c0 + c1t + c2t2 + · · ·

by applying the recurrence relation

cl =
1

b0




al −

l∑

i=1

bicl−i




.

To avoid dealing with denominators, we can also compute dl = bl+1
0

cl instead as

dl = bl
0al −

l∑

i=1

bi−1
0 bicl−i.

The coefficients cl can then be directly read off as

cl =
dl

bl+1
0

.

5.11 Specialization through exponential substitution

This section draws heavily from De Loera and Köppe (2006).
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We define a “short” rational generating function to be a function of the form

f (x) =
∑

i∈I

αi

∑r
k=1 xwik

∏ki

j=1

(

1 − xbi j
) , (5.26)

with x ∈ Cd, αi ∈ Q, wik ∈ Z
d and bi j ∈ Z

d \ {0}.

After computing the rational generating function (5.26) of a polytope (with ki = d

for all i), the number of lattice points in the polytope can be obtained by evaluating

f (1). Since 1 is a pole of each term, we need to compute the constant term in the

Laurent expansions of each term in (5.26) about 1. Since it is easier to work with

univariate series, a substitution is usually applied, either a polynomial substitution

x = (1 + t)λ,

as implemented in LattE (De Loera et al. 2003), or an exponential substitution (see,

e.g., Barvinok and Pommersheim 1999),

x = etλ,

as implemented in LattE macchiato (Köppe 2006). In each case, λ ∈ Zd is a vector

that is not orthogonal to any of the bi j. Both substitutions also transform the problem

of computing the constant term in the Laurent expansions about x = 1 to that of com-

puting the constant term in the Laurent expansions about t = 0. Here, we discuss the

exponential substitution.

Consider now one of the terms in (5.26),

g(t) =

∑r
k=1 eak t

∏d
j=1 (1 − ec jt)

,

with ak = 〈wik, λ〉 and c j = 〈bi j, λ〉. We rewrite this equation as

g(t) = (−1)d

∑r
k=1 eak t

td
∏d

j=1 c j

d∏

j=1

−c jt

1 − ec jt
.

The second factor is analytic in a neighborhood of the origin t = c1 = · · · = cd = 0 and

therefore has a Taylor series expansion

d∏

j=1

−c jt

1 − ec jt
=

∞∑

m=0

tdm(−c1, . . . ,−cd)tm, (5.27)

where tdm is a homogeneous polynomial of degree m called the m-th Todd polyno-

mial (Barvinok and Pommersheim 1999). Also expanding the numerator in the first

factor, we find

g(t) =
(−1)d

td
∏d

j=1 c j





∞∑

n=0

∑r
k=1 an

k

n!
tn









∞∑

m=0

tdm(−c1, . . . ,−cd)tm



 ,
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with constant term

(−1)d

td
∏d

j=1 c j





d∑

i=0

∑r
k=1 ai

k

i!
tdd−i(−c1, . . . ,−cd)




td =

(−1)d

∏d
j=1 c j

d∑

i=0

∑r
k=1 ai

k

i!
tdd−i(−c1, . . . ,−cd). (5.28)

To compute the first d+1 terms in the Taylor series (5.27), we write down the truncated

Taylor series

et − 1

t
≡

d∑

i=0

1

(i + 1)!
ti ≡

1

(d + 1)!

d∑

i=0

(d + 1)!

(i + 1)!
ti mod td+1,

where we have

1

(d + 1)!

d∑

i=0

(d + 1)!

(i + 1)!
ti ∈

1

(d + 1)!
Z[t].

Computing the reciprocal as explained in Section 5.10, we find

−t

1 − et
=

t

et − 1
=

1
et−1

t

≡ (d + 1)!
1

∑d
i=0

(d+1)!

(i+1)!
ti
≕

d∑

i=0

bit
i. (5.29)

Note that the constant term of the denominator is 1/(d + 1)!. The denominators of the

quotient are therefore ((d+1)!)i+1/(d+1)!. Also note that the bi are independent of the

generating function and can be computed in advance. An alternative way of computing

the bi is to note that

t

et − 1
=

∞∑

i=0

Bi

ti

i!
,

with Bi = i! bi the Bernoulli numbers, which can be computed using the recurrence (5.34)

(see Section 5.12).

Substituting t by c jt in (5.29), we have

−c jt

1 − ec jt
=

d∑

i=0

bic
i
jt

i.

Multiplication of these truncated Taylor series for each c j results in the first d+1 terms

of (5.27),
d∑

m=0

tdm(−c1, . . . ,−cd)tm
≕

d∑

m=0

βm

((d + 1)!)m
tm,

from which it is easy to compute the constant term (5.28). Note that this convolution

can also be computed without the use of rational coefficients,

(−1)d

∏d
j=1 c j

d∑

i=0

αi

i!

βd−i

((d + 1)!)d−i
=

(−1)d

((d + 1)!)d
∏d

j=1 c j

d∑

i=0

(

((d + 1)!)i

i!
αi

)

βd−i,

with αi =
∑r

k=1 ai
k
.
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Example 5.30 Consider the rational generating function

f (T ; x) =
x2

1

(1 − x−1
1

)(1 − x−1
1

x2)
+

x2
2

(1 − x−1
2

)(1 − x1x−1
2

)
+

1

(1 − x1)(1 − x2)

from Verdoolaege (2005, Example 39). Since this is a 2-dimensional problem, we first

compute the first 3 Todd polynomials (evaluated at −1),

et − 1

t
≡ 1 +

1

2
t +

1

6
t2 =

1

6

[

6 3 1
]

and
−t

1 − et
=

t

et − 1
≡

[
1

1

−3

6

3

36

]

,

where we represent each truncated power series by a vector of its coefficients. The

vector λ = (1,−1) is not orthogonal to any of the rays, so we can use the substitution

x = e(1,−1)t and obtain

e2t

(1 − e−t)(1 − e−2t)
+

e−2t

(1 − et)(1 − e2t)
+

1

(1 − et)(1 − e−t)
.

We have

t

1 − e−t
=

[
1

1

3

6

3

36

]

2t

1 − e−2t
=

[
1

1

6

6

12

36

]

−t

1 − et
=

[
1

1

−3

6

3

36

]

−2t

1 − e2t
=

[
1

1

−6

6

12

36

]

.

The first term in the rational generating function evaluates to

1

−1 · −2

[
1

1

2

1

4

2

]

∗

([
1

1

3

6

3

36

] [
1

1

6

6

12

36

])

=
1

2

[
1

1

2

1

4

2

]

∗

[
1

1

9

6

33

36

]

=
1

72

[

1 2 · 6 4 · 18
]

∗
[

1 9 33
]

=
213

72
=

71

24
.

Due to symmetry, the second term evaluates to the same value, while for the third term

we find
1

−1 · 1 · 36

[

1 0 · 6 0 · 18
]

∗
[

1 0 −3
]

=
−3

−36
=

1

12
.

The sum is
71

24
+

71

24
+

1

12
= 6.
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Note that the run-time complexities of polynomial and exponential substitution are

basically the same. The experiments of Köppe (2007) are somewhat misleading in this

respect since the polynomial substitution (unlike the exponential substitution) had not

been optimized to take full advantage of the stopped Barvinok decomposition. For

comparison, Table 2 shows running times for the same experiments of that paper, but

using barvinok version barvinok-0.23-47-gaa9024e on an Athlon MP 1500+ with

512MiB internal memory. This machine appears to be slightly slower than the machine

used in the experiments of Köppe (2007) as computing hickerson-14 using the dual

decomposition with polynomial substitution and maximal index 1 took 2768 seconds

on this machine using LattE macchiato. At this stage, it is not clear yet why the

number of cones in the dual decomposition of hickerson-13 differs from that of

LattE (De Loera et al. 2003) and LattE macchiato (Köppe 2006). We conclude

from Table 2 that (our implementation of) the exponential substitution is always slightly

faster than (our implementation of) the polynomial substitution. The optimal maximal

index for these examples is about 500, which agrees with the experiments of Köppe

(2007).

5.12 Approximate Enumeration using Nested Sums

If P ∈ Qd is a polyhedron and p(x) ∈ Q[x] is a polynomial and we want to sum

p(x) over all integer values of (a subset of) the variables x, then we can do this incre-

mentally by taking a variable x1 with lower bound L(x̂) and upper bound U(x̂), with

x̂ = (x2, . . . , xd), and computing

Q(x̂) =

U(x̂)∑

x1=L(x̂)

p(x). (5.31)

Since P is a polytope, the lower bound is a maximum of affine expressions in the

remaining variables, while the upper bound is a minimum of such expressions. If the

coefficients in these expressions are all integer, then we can compute Q(x̂) exactly as a

piecewise polynomial using formulas for sums of powers, as proposed by, e.g., Tawbi

(1994), Sakellariou (1997), Van Engelen et al. (2006). If some of the coefficients are

not integer, we can apply the same formulas to obtain an approximation, which can is

some cases be shown to be an overapproximation (Van Engelen et al. 2006). Note that

if we take the initial polynomial to be the constant 1, then this gives us a method for

computing an approximation of the number of integer points in a (parametric) polytope.

The first step is to compute the chamber decomposition of P when viewed as a 1-

dimensional parametric polytope. That is, we need to partition the projection of P onto

the remaining variables into polyhedral cells such that in each cell, both the upper and

the lower bound are described by a single affine expression. Basically, for each pair of

lower and upper bound, we compute the cell where the chosen lower bound is (strictly)

smaller than all other lower bounds and similarly for the upper bound.

For any given pair of lower and upper bound (l(x̂), u(x̂)), the formula (5.31) is
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Dual decomposition Primal decomposition

Time (s) Time (s)

Max. index Cones Poly Exp Cones Poly Exp

hickerson-12

1 11625 9.24 8.90 7929 4.80 4.55

10 4251 4.32 4.19 803 0.66 0.62

100 980 1.42 1.35 84 0.13 0.12

200 550 1.00 0.92 76 0.12 0.12

300 474 0.93 0.86 58 0.12 0.10

500 410 0.90 0.83 42 0.10 0.10

1000 130 0.42 0.38 22 0.10 0.07

2000 10 0.10 0.10 22 0.10 0.09

5000 7 0.12 0.11 7 0.12 0.10

hickerson-13

1 494836 489 463 483507 339 315

10 296151 325 309 55643 51 48

100 158929 203 192 9158 11 10

200 138296 184 173 6150 9 8

300 110438 168 157 4674 8 7

500 102403 163 151 3381 8 7

1000 83421 163 149 2490 8 7

2000 77055 170 153 1857 10 8

5000 57265 246 211 1488 13 11

10000 50963 319 269 1011 26 21

hickerson-14

1 1682743 2171 2064 552065 508 475

10 1027619 1453 1385 49632 62 59

100 455474 768 730 8470 14 13

200 406491 699 661 5554 11 10

300 328340 627 590 4332 11 9

500 303566 605 565 3464 11 9

1000 232626 581 532 2384 12 10

2000 195368 607 545 1792 14 12

5000 147496 785 682 1276 19 16

10000 128372 966 824 956 29 23

Table 2: Timing results of dual and primal decomposition with polynomial or expo-

nential substitution on the Hickerson examples
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computed for each monomial of p(x) separately. For the constant term α0, we have

u(x̂)∑

x1=l(x̂)

α0(x̂) = α0(x̂) (u(x̂) − l(x̂) + 1) . (5.32)

For the higher degree monomials, we use the formula

m−1∑

k=0

kn =
1

n + 1

n∑

k=0

(

n + 1

k

)

Bkmn+1−k =: S n(m), (5.33)

with Bi the Bernoulli numbers, which can be computed using the recurrence

m∑

j=0

(

m + 1

j

)

B j = 0 B0 = 1. (5.34)

Note that (5.33) is also valid if m = 0, i.e., S n(0) = 0, a fact that can be easily shown

using Newton series (Van Engelen et al. 2006).

Since we can only directly apply the summation formula when the lower bound is

zero (or one), we need to consider several cases.

1. l(x̂) ≥ 1

u(x̂)∑

x1=l(x̂)

αn(x̂) xn
1 = αn(x̂)





u(x̂)∑

x1=1

xn
1 −

l(x̂)−1∑

x1=1

xn
1





= αn(x̂) (S n(u(x̂) + 1) − S n(l(x̂)))

2. u(x̂) ≤ −1

u(x̂)∑

x1=l(x̂)

αn(x̂) xn
1 = αn(x̂)(−1)n

−l(x̂)∑

x1=−u(x̂)

αn(x̂) xn
1

= αn(x̂)(−1)n (S n(−l(x̂) + 1) − S n(−u(x̂)))

3. l(x̂) ≤ 0 and u(x̂) ≥ 0

u(x̂)∑

x1=l(x̂)

αn(x̂) xn
1 = αn(x̂)





u(x̂)∑

x1=0

xn
1 + (−1)n

−l(x̂)∑

x1=1

xn
1





= αn(x̂) (S n(u(x̂) + 1) + (−1)nS n(−l(x̂) + 1))

If the coefficients in the lower and upper bound are all integer, then the above 3

cases partition (the integer points in) the projection of P onto the remaining variables.

However, if some of the coefficients are rational, then the lower and upper bound can

lie in the open interval (0, 1) for some values of x̂. We may therefore also want to

consider the following two cases.
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4. 0 < l(x̂) < 1

u(x̂)∑

x1=l(x̂)

αn(x̂) xn
1 = αn(x̂)S n(u(x̂) + 1)

5. 0 < −u(x̂) < 1

u(x̂)∑

x1=l(x̂)

αn(x̂) xn
1 = αn(x̂)(−1)nS n(−l(x̂) + 1)

Note that we may add the constraint u ≥ 1 to case 4 and the constraint l ≤ −1 to case 5,

since the correct value for these two cases would be zero if these extra constraints do

not hold.

An alternative to adding the above two cases would be to simply ignore them, i.e.,

assume a value of 0. Another alternative would be to reduce case 3 to

l(x̂) ≤ −1 and u(x̂) ≥ 1,

while extending cases 4 and 5 to

−1 < l(x̂) < 1 and u ≥ 1

and

−1 < u(x̂) < 1 and l ≤ −1,

respectively, with the remaining cases (−1 < l ≤ u < 1) having value 0. There does

not appear to be a consistently better choice here, as each of these three approaches

seems to yield better results on some examples. The last approach has the additional

drawback that we would also have to deal with 5 cases, even if the bounds are integers.

If at least one of the lower or upper bound is an integer affine expression, then we

can reduce the 3 (or 5) cases to a single case (case 3) by an affine substitution that

ensure that the new (lower or upper) bound is zero. In particular, if l(x̂) is an integer

affine expression, then we replace x by x′ + l(x̂) and similarly for an upper bound.

5.13 Exact Enumeration using Nested Sums

The exact enumeration using nested sums proceeds in much the same way as the ap-

proximate enumeration from subsection 5.12, with the notable exception that we need

to take the (greatest or least) integer part of any fractional bounds that may occur. This

has several consequences, discussed below.

Since we will introduce floors during the recursive application of the procedure, we

may as well allow the weight p(x) in (5.31) to be a (piecewise) quasipolynomial.

For the constant term, (5.32) becomes

u(x̂)∑

x1=l(x̂)

α0(x̂) = α0(x̂) (⌊u(x̂)⌋ − ⌈l(x̂)⌉ + 1) .
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Since we force the lower and upper bounds to be integers, cases 4 and 5 do not

occur, while the conditions for cases 1 and 2 can be simplified to

l(x̂) > 0

and

u(x̂) < 0,

respectively.

If the variable x appears in any floor expression, either because such an expression

was present in the original weight function or because it was introduced when another

variable with an affine bound in x was summed, then the domain has to be “splintered”

into D parts, where D is the least common multiple of the denominators of the coeffi-

cients of x in any of the integer parts. In particular, the domain is split into x = Dy + i

for each i in [0,D − 1]. Since D is proportional to the coefficients in the constraints,

it is exponential in the input size. This splintering will therefore introduce exponential

behavior, even if the dimension is fixed.

Splintering is clearly the most expensive step in the algorithm, so we want to avoid

this step as much as possible. Pugh (1994) already noted that summation should pro-

ceed over variables with integer bounds first. This can be extended to choosing a vari-

able with the smallest coefficient in absolute value. In this way, we can avoid splinter-

ing on the largest denominator.

Sakellariou (1996) claims that splintering can be avoided altogether. In particular,

Sakellariou (1996, Lemma 3.2) shows that

a∑

x=0

xm (x mod b)n ,

with a and b integers, is equal to






a∑

x=0

xm+n if a < b

⌊a/b⌋−1∑

i=0

b−1∑

x=0

(x + ib)mxn +

a mod b∑

x=0

(x + b ⌊a/b⌋)mxn if a ≥ b,

(5.35)

effectively avoiding splintering if a given monomial contains a single integer part ex-

pression with argument of the form x/b. An argument of the form (x − c(x̂))/b can

be handled through a variable substitution. If the argument is of the form cx/b, with

c , 1, then Sakellariou (1996, (3.27)) proposes to rewrite the monomial as

a∑

x=0

(cx mod b)n =

a∑

x=0

cx∑

y=cx

(y mod b)n

=

a∑

x=0





cx∑

y=0

(y mod b)n −

cx−1∑

y=0

(y mod b)n




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and applying (5.35). However, such an application results in an expression containing

cx mod b∑

y=0

yn,

which in turn leads to a polynomial of degree n + 1 in (cx mod b), i.e., of degree

one higher than the original expression. Furthermore, if the bound on x is rational

then a itself contains a floor, which, on application of (5.35), results in a nested floor

expression, blocking the application of the same rule for the next variable. Finally,

the case where a monomial contains multiple floor expressions, either occurring in the

input quasi-polynomial or introduced by different variables having a rational bound

with a non-zero coefficient in the same variable, is not handled. Also note that if we

disallow nested floor expressions, then this rule will rarely be applicable since we try

to eliminate variables with integer bounds first.

5.14 Summation using local Euler-Maclaurin formula

In this section we provide some implementation details on using local Euler-Maclaurin

formula to compute the sum of a piecewise polynomial evaluated in all integer points

of a two-dimensional parametric polytope. For the theory behind these formula and a

discussion of the original implementation (for non-parametric simplices), we refer to

Berline and Vergne (2006).

In particular, consider a parametric piecewise polynomial in n parameters and m

variables c : Zn → Zm → Q : p 7→ c(p), with c(p) : Zm → Q : x 7→ c(p)(x) and

cp(x) =






c1(p)(x) if x ∈ D1(p)

...

cr(p)(x) if x ∈ Dr(p),

with the ci polynomials, ci ∈ (Q[p])[x], and the Di disjoint linearly parametric poly-

topes. We want to compute

g(p) =
∑

x∈Zm

c(p)(x).

5.14.1 Reduction to the summation of a parametric polynomial over a paramet-

ric polytope with a fixed combinatorial structure

Since the Di are disjoint, we can consider each (ci,Di)-pair individually and compute

g(p) =

r∑

i=1

gi(p) =

r∑

i=1

∑

x∈Dr(p)∩Zm

cr(p)(x).

The second step is to compute the chamber decomposition (Verdoolaege 2005, Section

4.2.3) of each parametric polytope Di. The result is a subdivision of the parameter

space into chambers Ci j such that Di has a fixed combinatorial structure, in particular a

fixed set of parametric vertices, on (the interior of) each Ci j. Applying Theorem 5.12,
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this subdivision can be transformed into a partition { C̃i j } by making some of the facets

of the chambers open (Köppe and Verdoolaege 2008, Section 3.2). Since we are only

interested in integer parameter values, any of the resulting open facets 〈a,p〉 + c > 0,

with a ∈ Zn and c ∈ Z, can then be replaced by 〈a,p〉 + c − 1 ≥ 0. Again, we have

gi(p) =
∑

j

gi j(p) =
∑

j

∑

x∈Ci j(p)∩Zm

cr(p)(x).

After this reduction, the technique of Berline and Vergne (2006) can be applied

practically verbatim to the parametric polytope with a fixed combinatorial structure.

In principle, we could also handle piecewise quasi-polynomials using the technique of

Verdoolaege (2005, Section 4.5.4), except that we only need to create an extra variable

for each distinct floor expression in a monomial, rather than for each occurrence of

a floor expression in a monomial. However, since we currently only support two-

dimensional polytopes, this reduction has not been implemented yet.

5.14.2 Summation over a one-dimensional parametric polytope

The basis for the summation technique is the local Euler-Maclaurin formula (Berline

and Vergne 2006, Theorem 26)

∑

x∈P(p)∩Λ

h(p)(x) =
∑

F(p)∈F (P(p))

∫

F(p)

DP(p),F(p) · h(p), (5.36)

where P(p) is a parametric polytope, Λ is a lattice, F (P(p)) are the faces of P(p),

DP(p),F(p) is a specific differential operator associated to the face of a polytope. The

Lebesgue measure used in the integral is such that the integral of the indicator function

of a lattice element of the lattice Λ ∩ (aff(F(p)) − F(p)) is 1, i.e., the intersection of

Λ with the linear subspace parallel to the affine hull of the face F(p). Note that the

original theorem is formulated for a non-parametric polytope and a non-parametric

polynomial. However, as we will see, in each of the steps in the computation, the

parameters can be treated as symbolic constants without affecting the validity of the

formula, see also Berline and Vergne (2006, Section 6).

The differential operator DP(p),F(p) is obtained by plugging in the vector D = (D1, . . . ,Dm)

of first order differential operators, i.e., Dk is the first order differential operator in the

kth variable, in the function µP(p),F(p). This function is determined by the transverse

cone of the polyhedron P(p) along its face F(p), which is the supporting cone of P(p)

along F(p) projected into the linear subspace orthogonal to F(p). The lattice associated

to this space is the projection of Λ into this space.

In particular, for a zero-dimensional affine cone in the zero-dimensional space, we

have µ = 1 (Berline and Vergne 2006, Proposition 12), while for a one-dimensional

affine cone K = (−t+R+)r in the one-dimensional space, where r is a primitive integer

vector and t ∈ [0, 1), we have (Berline and Vergne 2006, (13))

µ(K)(ξ) =
ety

1 − ey
+

1

y
= −

∞∑

n=0

b(n + 1, t)

(n + 1)!
yn, (5.37)
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with y = 〈ξ, r〉 and b(n, t) the Bernoulli polynomials defined by the generating series

Todd(t, y) =
etyy

ey − 1
=

∞∑

n=0

b(n, t)

n!
yn. (5.38)

The constant terms of these Bernoulli polynomials are the Bernoulli numbers.

Applying (5.36) to a one-dimensional parametric polytope P(p) = [v1(p), v2(p)],

we find
∑

x∈P(p)∩Z

h(p)(x) =

∫

P(p)

DP(p),P(p) · h(p)

+

∫

v1(p)

DP(p),v1(p) · h(p)

+

∫

v2(p)

DP(p),v2(p) · h(p).

The transverse cone of a polytope along the whole polytope is a zero-dimensional cone

in a zero-dimensional space and so DP(p),P(p) = µP(p),P(p)(D) = 1. The transverse cone

along v1(p) is v1(p) + R+ and so DP(p),v1(p) = µ(v1(p) + R+)(D) as in (5.37), with

y = 〈D, 1〉 = D and t = ⌈v1(p)⌉ − v1(p) = {−v1(p)}. Similarly we find DP(p),v2(p) =

µ(v2(p)−R+)(D) as in (5.37), with y = 〈D,−1〉 = −D and t = v2(p)−⌊v2(p)⌋ = {v2(p)}.

Summarizing, we find

∑

x∈P(p)∩Z

h(p)(x) =

∫ v2(p)

v1(p)

h(p)(t) dt

−

∞∑

n=0

b(n + 1, {−v1(p)})

(n + 1)!
(Dnh(p))(v1(p))

−

∞∑

n=0

(−1)n b(n + 1, {v2(p)})

(n + 1)!
(Dnh(p))(v2(p)).

Note that in order to apply this formula, we need to verify first that v1(p) is indeed

smaller than (or equal to) v2(p). Since the combinatorial structure of P(p) does not

change throughout the interior of the chamber, we only need to check the order of the

two vertices for one value of the parameters from the interior of the chamber, a point

which we may compute as in subsection 5.1.

5.14.3 Summation over a two-dimensional parametric polytope

For two-dimensional polytope, formula (5.36) has three kinds of contributions: the

integral of the polynomial over the polytope, contributions along edges and contribu-

tions along vertices. As suggested by Berline (2007), the integral can be computed by

applying the Green-Stokes theorem:

"

P(p)

(

∂M

∂x
−
∂L

∂y

)

=

∫

∂P(p)

(L dx + M dy).
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In particular, if M(p)(x, y) is such that ∂M
∂x

(p)(x, y) = h(p)(x, y) then

"

P(p)

h(p)(x, y) =

∫

∂P(p)

M(p)(x, y) dy.

Care must be taken to integrate over the boundary in the positive direction. Assuming

the vertices of the polygon are not given in a predetermined order, we can check the

correct orientation of the vertices of each edge individually. Let n = (n1, n2) be the

inner normal of a facet and let v1(p) and v2(p) be the two vertices of the facet, then the

vertices are in the correct order if
∣
∣
∣
∣
∣
∣

v2,1(p) − v1,1(p) n1

v2,2(p) − v1,2(p) n2

∣
∣
∣
∣
∣
∣
≥ 0.

Since these two vertices belong to the same edge, their order will not change within a

chamber and so we can again perform this check for a single value of the parameters.

To integrate M over an edge F, let f be a primitive integer vector in the direction of the

edge. Then v2(p) = v1(p)+k(p) f and any point on the edge can be written as v1(p)+λf

with 0 ≤ λ ≤ k(p). That is,

∫

F

M(p)(x, y) dy =

∫ k(p)

0

M(p)(v1,1(p) + λ f1, v1,2(p) + λ f2) f2 dλ. (5.39)

For the edges, we can again apply (5.37), but we must first project the supporting

cone at the edge into the linear subspace orthogonal to the edge. Let n = (n1, n2) be

the (primitive integer) inner normal of this facet F(p), then f = (−n2, n1) is parallel to

the facet and we can write one of the vertices v(p) as a linear combination of these two

vectors:

v(p) =
[

f n
]

a(p) =

[

−n2 n1

n1 n2

]

a(p) (5.40)

or

a(p) =

[

−n2 n1

n1 n2

]−1

v(p) =

[

−n2/d n1/d

n1/d n2/d

]

v(p), (5.41)

with d = n2
1
+ n2

2
. The lattice associated to the linear subspace orthogonal to the facet

is the projection of Λ into this space. Since n is primitive, a basis for this lattice can

be identified with n/d. The coordinate of the whole facet in this space is therefore

da2(p) =
[

n1 n2

]

v(p), while the transverse cone is da2(p) + R+. Similarly, a linear

functional ξ′ projects onto a linear functional ξ = 〈ξ′,n〉/d in the linear subspace.

Applying (5.37), with y = n1

d
D1+

n2

d
D2 and t = {−n1v1(p) − n2v2(p)}, we therefore find

DP(p),F(p) = −

∞∑

n=0

b(n + 1, {−n1v1(p) − n2v2(p)})

(n + 1)!

(
n1

d
D1 +

n2

d
D2

)n

= −

∞∑

i=0

∞∑

j=0

b(i + j + 1, {−n1v1(p) − n2v2(p)})

(i + j + 1)!

ni
1
n

j

2

di+ j
Di

1D
j

2
.

After applying this differential operator to the polynomial h(p)(x), the resulting poly-

nomial h′(p)(x) = DP(p),F(p) ·h(p)(x) needs to be integrated over the facet. The measure
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to be used is such that the integral of a lattice tile in the linear space parallel to the facet

is 1, i.e.,
∫ f

0

1 =

∫ 1

0

1dz = 1,

with z the coordinate along f. Referring to (5.40) and (5.41), all points of the facet have

the form x(p) = z f + a2(p) n, while the z-coordinate of the vertices v1(p) and v2(p) are

(−n2v1,1 + n1v1,2)/d and (−n2v2,1 + n1v2,2)/d, respectively. That is, the contribution of

the facet is equal to

∫ (−n2v2,1+n1v2,2)/d

(−n2v1,1+n1v1,2)/d

h′(p) (z f + a2(p) n) dz,

where, again, we need to ensure that the lower limit is smaller than the upper limit

using the usual method of plugging in a particular value of the parameters.

Finally, we consider the contributions of the vertices. The transverse cones are in

this case simply the supporting cones. Since µ is a valuation, we may apply Barvinok’s

decomposition and assume that the cone is unimodular. For an affine cone

K = v(p) + R+r1 + R+r2

= (a1(p) + R+)r1 + (a2(p) + R+)r2,

with

a(p) =
[

r1 r2

]−1
v(p),

we have (Berline and Vergne 2006, Proposition 31),

µ(K)(ξ) =
et1y1+t2y2

(1 − ey1 )(1 − ey2 )
+

1

y1

B(y2 −C1y1, t2) +
1

y2

B(y1 −C2y2, t1) −
1

y1y2

, (5.42)

with

B(y, t) =
ety

1 − ey
+

1

y
= −

∞∑

n=0

b(n + 1, t)

(n + 1)!
yn,

yi = 〈ξ, ri〉, Ci = 〈v1, v2〉/〈vi, vi〉 and ti = {−ai(p)}. Expanding (5.42), we find

µ(K)(ξ) =



−
b(0, t1)

y1

−

∞∑

n=0

b(n + 1, t1)

(n + 1)!
yn

1







−
b(0, t2)

y2

−

∞∑

n=0

b(n + 1, t2)

(n + 1)!
yn

2





−





∞∑

n=0

b(n + 1, t2)

(n + 1)!

yn
2

y1

+

∞∑

n=0

b(n + 1, t2)

(n + 1)!

(y2 −C1y1)n − yn
2

y1





−





∞∑

n=0

b(n + 1, t1)

(n + 1)!

yn
1

y2

+

∞∑

n=0

b(n + 1, t1)

(n + 1)!

(y1 −C2y2)n − yn
1

y2





−
1

y1y2

=

∞∑

n1=0

∞∑

n2=0

c(C1,C2, t1, t2; n1, n2) yn
1yn

2,
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with

c(C1,C2, t1, t2; n1, n2) =
b(n1 + 1, t1)

(n1 + 1)!

b(n2 + 1, t2)

(n2 + 1)!

−
b(n1 + n2 + 1, t2)

(n1 + n2 + 1)!

(

n1 + n2 + 1

n1 + 1

)

(−C1)n1+1

−
b(n1 + n2 + 1, t1)

(n1 + n2 + 1)!

(

n1 + n2 + 1

n2 + 1

)

(−C2)n2+1 .

For ξ = D, we have

yn
1yn

2 =
(

r1,1D1 + r1,2D2

)n1
(

r2,1D1 + r2,2D2

)n2

=





n1∑

k=0

rk
1,1r

n1−k

1,2

(

n1

k

)

Dk
1D

n1−k

2









n2∑

l=0

rl
2,1r

n2−l

2,2

(

n2

l

)

Dl
1D

n2−l

2





and so DP(p),v(p) = µ(K)(D) =

∞∑

i=0

∞∑

j=0

∑

i+ j=n1+n2

n1≥0

n2≥0

∑

k+l=i
0≤k≤n1

0≤l≤n2

c(C1,C2, t1, t2; n1, n2)rk
1,1r

n1−k

1,2
rl

2,1r
n2−l

2,2

(

n1

k

)(

n2

l

)

Di
1D

j

2
.

The contribution of this vertex is then

h′(p)(v(p)),

with h′(p)(x) = DP(p),v(p) · h(p)(x).

Example 5.43 As a simple example, consider the (non-parametric) triangle in Fig-

ure 5.44 and assume we want to compute

∑

x∈T∩Z2

x1x2.

Since T ∩ Z2 = { (2, 4), (3, 4), (2, 5) }, the result should be

2 · 4 + 3 · 4 + 2 · 5 = 30.

Let us first consider the integral

"

T

x1x2 =

∫

∂T

x2
1
x2

2
dx2.

Integration along each of the edges of the triangle yields the following.

For the edge in the margin, we have f = (1, 0), i.e., f2 = 0. The contribution of this

edge to the integral is therefore zero.

For this edge, we have f = (−1, 1). The contribution of this edge to the integral is

therefore
∫ 1

0

(3 − λ)2(4 + λ)

2
dλ =

337

24
.
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x1x2

(2, 4) (3, 4)

(2, 5)

· ·

·

Figure 5.44: Sum of polynomial x1x2 over the integer points in a triangle T

For this edge, we have f = (0,−1). The contribution of this edge to the integral is

therefore
∫ 1

0

22(5 − λ)

2
(−1)dλ = −9.

The total integral is therefore

∫

∂T

x2
1
x2

2
dx2 = 0 +

337

24
− 9 =

121

24
.

Now let us consider the contributions of the edges. We will need the following

Bernoulli numbers in our computations.

b(1, 0) = −
1

2

b(2, 0) =
1

6

b(3, 0) = 0

b(4, 0) = −
1

30

The normal to the facet F1 in the margin is n = (0, 1). The vector f = (−1, 0) is

parallel to the facet. We have

[

2

4

]

= −2

[

−1

0

]

+ 4

[

0

1

]

and

[

3

4

]

= −3

[

−1

0

]

+ 4

[

0

1

]

.
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Therefore t = {−4} = 0, y = D2,

DT,F1
= −

∞∑

j=0

b( j + 1, 0)

( j + 1)!
D

j

2

= −
b(1, 0)

1
−

b(2, 0)

2
D2 + · · ·

and

h′(x) = DT,F1
· x1x2 =

(

1

2
−

1

12
D2

)

· x1x2 =
1

2
x1x2 −

1

12
x1.

With x1 = −z and x2 = 4, the contribution of this facet is

∫ −2

−3

−2z +
1

12
z dz =

115

24
.

The normal to the facet F2 in the margin is n = (1, 0). The vector f = (0, 1) is

parallel to the facet. We have

[

2

4

]

= 4

[

0

1

]

+ 2

[

1

0

]

and

[

2

5

]

= 5

[

0

1

]

+ 2

[

1

0

]

.

Therefore t = {−2} = 0, y = D1,

DT,F2
= −

∞∑

i=0

b(i + 1, 0)

(i + 1)!
Di

1

= −
b(1, 0)

1
−

b(2, 0)

2
D1 + · · ·

and

h′(x) = DT,F2
· x1x2 =

(

1

2
−

1

12
D1

)

· x1x2 =
1

2
x1x2 −

1

12
x2.

With x1 = 2 and x2 = z, the contribution of this facet is

∫ 5

4

z −
1

12
z dz =

33

8
.

The normal to the facet F3 in the margin is n = (−1,−1). The vector f = (1,−1) is

parallel to the facet. We have

[

3

4

]

= −
1

2

[

1

−1

]

−
7

2

[

−1

−1

]

and

[

2

5

]

= −
3

2

[

1

−1

]

−
7

2

[

−1

−1

]

.

Therefore t = {7} = 0, y = − 1
2
D1 −

1
2
D2,

DT,F3
= −

∞∑

i=0

∞∑

j=0

b(i + j + 1, 0)

(i + j + 1)!

(−1)i+ j

2i+ j
Di

1D
j

2

= −
b(1, 0)

1
+

1

2

b(2, 0)

2
D1 +

1

2

b(2, 0)

2
D2 + · · ·
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and

h′(x) = DT,F4
· x1x2 =

(

1

2
+

1

24
D1 +

1

24
D2

)

· x1x2 =
1

2
x1x2 +

1

24
x2 +

1

24
x1.

With x1 = z + 7
2

and x2 = −z + 7
2
, the contribution of this facet is

∫ − 1
2

− 3
2

1

2
(z +

7

2
)(−z +

7

2
) +

1

24
(−z +

7

2
) +

1

24
(z +

7

2
) dz =

47

8
.

The total contribution of the edges is therefore

115

24
+

33

8
+

47

8
=

355

24
.

Finally, we consider the contributions of the vertices.

For the vertex v = (3, 4), we have r1 = (−1, 0) and r2 = (−1, 1). Since v is integer,

we have t1 = t2 = 0. Also, C1 = 1, C2 = 1/2, y1 = −D1 and y2 = −D1 + D2. Since the

total degree of the polynomial x1x2 is two, we only need the coefficients of µ(K)(ξ) up

to n1 + n2 = 2.
n1 n2

0 0
(

b(1,0)

1!

b(1,0)

1!
−

b(2,0)

2!

(
1
1

)

(−1)1 −
b(2,0)

2!

(
1
1

)

(− 1
2
)1
)

1 0
(

b(2,0)

2!

b(1,0)

1!
−

b(3,0)

3!

(
2
2

)

(−1)2 −
b(3,0)

3!

(
2
1

)

(− 1
2
)1
)

(−D1)

0 1
(

b(1,0)

1!

b(2,0)

2!
−

b(3,0)

3!

(
2
1

)

(−1)1 −
b(3,0)

3!

(
2
2

)

(− 1
2
)2
)

(−D1 + D2)

2 0
(

b(3,0)

3!

b(1,0)

1!
−

b(4,0)

4!

(
3
3

)

(−1)3 −
b(4,0)

4!

(
3
1

)

(− 1
2
)1
)

(−D1)2

1 1
(

b(2,0)

2!

b(2,0)

2!
−

b(4,0)

4!

(
3
2

)

(−1)2 −
b(4,0)

4!

(
3
2

)

(− 1
2
)2
)

(−D1) (−D1 + D2)

0 2
(

b(1,0)

1!

b(3,0)

3!
−

b(4,0)

4!

(
3
1

)

(−1)1 −
b(4,0)

4!

(
3
3

)

(− 1
2
)3
)

(−D1 + D2)2

We find

h′(x) =

(

3

8
−

1

24
(−D1) −

1

24
(−D1 + D2) +

7

576
(−D1D2) −

5

1152
(−2D1D2)

)

x1x2

=
3

8
x1x2 +

1

24
x2 −

1

24
(−x2 + x1) +

7

576
(−1) −

5

1152
(−2).

The contribution of this vertex is therefore

h′(3, 4) =
1355

288
.

For the vertex v = (2, 5), we have r1 = (0,−1) and r2 = (1,−1). Since v is integer,

we have t1 = t2 = 0. Also, C1 = 1, C2 = 1/2, y1 = −D2 and y2 = D1 −D2. We similarly

find

h′(x) =
3

8
x1x2 +

1

24
x1 −

1

24
(x2 − x1) +

7

576
(−1) −

5

1152
(−2).

The contribution of this vertex is therefore

h′(2, 5) =
1067

288
.
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For the vertex v = (2, 4), we have r1 = (1, 0) and r2 = (0, 1). Since v is integer, we

have t1 = t2 = 0. The computations are easier in this case since C1 = C2 = 0, y1 = D1

and y2 = D2. We find

h′(x) =
1

4
x1x2 −

1

12
x2 −

1

12
x1 +

1

144
(1).

The contribution of this vertex is therefore

h′(2, 4) =
253

144
.

The total contribution of the vertices is then

1355

288
+

1067

288
+

253

144
=

61

6

and the total sum is
121

24
+

355

24
+

61

6
= 30.

Example 5.45 Consider the parametric polytope

P(n) = { x | x1 ≥ 2 ∧ 3x1 ≤ n + 9 ∧ 4 ≤ x2 ≤ 5 }.

If n ≥ −3, then the vertices of this polytope are (2, 4), (2, 5), (3+n/3, 4) and (3+n/3, 5).

The contributions of the faces of P(n) to

∑

x∈P(n)∩Z2

x1x2

for the chamber n ≥ −3 are shown in Table 3. The final result is

{

n2

2
− 3n

{
n
3

}

+ 21
2

n + 9
2

{
n
3

}2
− 63

2

{
n
3

}

+ 45 if n + 3 ≥ 0.

5.15 Summation through exponential substitution and Laurent ex-

pansions (old)

This section was inspired by Baldoni et al. (2008) and presents the old implemena-

tion of the laurent summation method. The implementation is described in subsec-

tion 5.16.

Let f (x) be the generating function of a polytope P, i.e.,

f (x) =
∑

t∈P∩Zd

xt.

Substituting x = ey, we obtain

f (ey) =
∑

t∈P∩Zd

e〈t,y〉 =
∑

t∈P∩Zd

∑

n≥0

tnyn

n!
=

∑

n≥0





∑

t∈P∩Zd

tn





yn

n!
,
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n2

4
+

9

2
n +

45

4

2
33

8

3 + n/3 −
3

2
n

{
n

3

}

+
3

4
n +

9

4

{
n

3

}2

−
63

4

{
n

3

}

+
57

8

4

23

216
n2 +

23

12
n +

115

24

5 31

216
n2 +

31

12
n +

155

24

(3 + n/3, 5)
−

31

36
n

{
n

3

}

+
31

72
n +

31

24

{
n

3

}2

−
217

24

{
n

3

}

+
589

144

(2, 5) 341

144

(2, 4)

253

144

(3 + n/3, 4)
−

23

36
n

{
n

3

}

+
23

72
n +

23

24

{
n

3

}2

−
161

24

{
n

3

}

+
437

144

Table 3: Contributions of the faces of P(n) to the sum of x1x2 over the integer points of

P(n)
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with n! = n1!n2! · · · nd!. We observe that the sum of the monomial tn over the integer

points in P is equal to n! times the coefficient of the yn term in the Taylor expansion of

f (ey).

As in the case of unweighted counting (see subsection 5.11), we have to add the

coefficients of these monomials in the Laurent expansions of the terms in (5.26). How-

ever, unlike the case of unweighted counting, we cannot transform this problem to a

univariate problem and computing the coefficient of a monomial in the Laurent expan-

sions does not reduce to computing the coefficient of a single higher-degree monomial

in a Taylor expansion.

Consider now one of the terms g(x) = fik(x) in (5.26),

g(ey) =
e
∑d

j=1 s j(p)〈b j,y〉

∏d
j=1

(

1 − e〈b j,y〉
) , (5.46)

with wi j(p) =
∑d

j=1 s j(p)b j written in terms of the b j, which are assumed to form a

basis and where we have made explicit the only place where the parameters p appear.

We rewrite this equation as

g(ey) =





d∏

j=1

−1

〈b j, y〉









d∏

j=1

−〈b j, y〉 e
s j(p)〈b j,y〉

1 − e〈b j,y〉




. (5.47)

The second factor is analytic and is a product of generating functions Todd(s j(p), 〈b j, y〉)

of Bernoulli polynomials (5.38). Plugging in these expressions, we find

Todd(s j(p), 〈b j, y〉) =
−〈b j, y〉e

s j(p)〈b j,y〉

1 − e〈b j,y〉

=

∞∑

n=0

b(n, s j(p))

n!
〈b j, y〉

n

=
∑

k≥0

b(
∑

ki, s j(p))

(
∑

ki)!

(∑

ki

k

)

bk
j y

k

=
∑

k≥0

b(
∑

ki, s j(p))
∏

i ki!
bk

j y
k, (5.48)

with
(∑

ki

k

)

=

( ∑

ki

k1, k2, . . . kd

)

=
(
∑

ki)!

k!
=

d∏

i=1

(∑i
j=1 k j

ki

)

the multinomial coefficients. For the first factor, we compute the Laurent expansion of
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each of its factors,

−1

〈b j, y〉
=

−1
∑d

k= f b jkyk

=
−1

b j f y f

(

1 +

∑d
k= f+1 b jkyk

b j f y f

)

=
−1

b j f y f

∞∑

n=0

(−1)n





∑d
k= f+1 b jkyk

b j f y f





n

=
∑

n≥0

(∑

nk

n

)

(−1)1+
∑

nk

b′
j
n

b
1+

∑

nk

j f

y′n

y
1+

∑

nk

f

, (5.49)

where b j f is the first non-zero coefficient of b j and the vector b′
j
contains the subsequent

d − f coefficients of b j.

Given a polynomial

q(y,p) =
∑

m

βm(p) ym

that we wish to sum over the integer points of a polytope P, we perform the following

operations for each unimodular cone in the decomposition of each vertex cone.

• For each m with βm(p) , 0

– Compute all sums N =
∑d

j=1(0,−
∑

k n jk − 1,n j) of exponents from (5.49)

such that N ≤ m and compute the corresponding coefficient γN in the prod-

uct of Laurent series by enumerating all combinations of n j leading to the

same N. Note that there are only a finite number of N satisfying this con-

straint since
∑

Nk = −d. By reordering the variables such that the highest

exponents occurs for the first variable, the number of N can be reduced.

– For each of these N

* Compute the coefficient δm−N(p) of ym−N in the product of Taylor ex-

pansions (5.48).

• The contribution of this cone is the sum of

m!α βm(p) γN δm−N(p)

over all considered m and N.

Within each vertex cone computation, the coefficients γN and δm−N(p) only need to be

computed once.

Example 5.50 Consider once more the rational generating function

f (T ; x) =
x2

1

(1 − x−1
1

)(1 − x−1
1

x2)
+

x2
2

(1 − x−1
2

)(1 − x1x−1
2

)
+

1

(1 − x1)(1 − x2)
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from Verdoolaege (2005, Example 39) and Example 5.30. Assume we want to compute

∑

y∈T∩Z2

y2
1 + y2

2.

We will need the following Bernoulli polynomials

b(0, s) = 1

b(1, s) =
1

2
(−1 + 2s)

b(2, s) =
1

6

(

1 − 6s + 6s2
)

b(3, s) =
1

2

(

s − 3s2 + 2s3
)

b(4, s) =
1

30

(

−1 + 30s2 − 60s3 + 30s4
)

For the first term, we have (2, 0) = −2 (−1, 0) + 0 (−1, 1) and substitution yields

h(y) =
1

y1

1

y1 − y2

y1e(−2)(−y1)

1 − e−y1

(y1 − y2)e0(−y1+y2)

1 − e−y1+y2

=
1

y1





1

y1



1 +
y2

y1

+
y2

2

y2
1

+ · · ·









(

1 +
b(1,−2)

1
(−y1) +

b(2,−2)

2
(−y1)2 +

b(3,−2)

3!
(−y1)3 +

b(4,−2)

4!
(−y1)4 + · · ·

)

(

1 +
−1

2
(−y1 + y2) +

1

12
(−y1 + y2)2 + 0(−y1 + y2)3 +

1

720
(−y1 + y2)4 + · · ·

)

We obtain the following results:

m N γNyN m − N δm−Nym−N m!αβmγNδm−N

(2, 0) (−2, 0) 1y−2
1

(4, 0)
721

240
y4

1

721

120

(0, 2) (−2, 0) 1y−2
1

(2, 2)
179

720
y2

1
y2

2

179

360

(−3, 1) 1y−3
1

y2 (3, 1) −
211

120
y3

1
y1 −

211

60

(−4, 2) 1y−4
1

y2
2

(4, 0)
721

240
y4

1

721

120
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For the second term, we similarly obtain

m N γNyN m − N δm−Nym−N m!αβmγNδm−N

(2, 0) (−1,−1) −1y−1
1

y−1
2

(3, 1)
1

180
y3

1
y1 −

1

90

(−2, 0) −1y−2
1

(4, 0) −
1

720
y4

1

1

360

(0, 2) (−1,−1) −1y−1
1

y−1
2

(1, 3) −
211

120
y1y3

2

211

60

(−2, 0) −1y−3
1

y2 (2, 2)
179

720
y3

1
y2 −

179

360

(−3, 1) −1y−3
1

y2 (3, 1)
1

180
y3

1
y1 −

1

90

(−4, 2) −1y−4
1

y2
2

(4, 0) −
1

720
y4

1

1

360

Finally, for the third term, we obtain

m N γNyN m − N δm−Nym−N m!αβmγNδm−N

(2, 0) (−1,−1) −1y−1
1

y−1
2

(3, 1) 0y3
1
y1 0

(0, 2) (−1,−1) −1y−1
1

y−1
2

(1, 3) 0y1y3
2

0

Adding up all contributions in the final columns of these tables, we obtain a grand total

of

12.

5.16 Summation through exponential substitution and Laurent ex-

pansions

This section was inspired by Baldoni et al. (2009).

As in subsection 5.15, we want to compute n! times the coefficient of the yn term

in the Taylor expansion of f (ey). However, we do not write (5.46), i.e.,

g(ey) =
e
∑d

j=1 s j(p)〈b j,y〉

∏d
j=1

(

1 − e〈b j,y〉
)

as in (5.47), but as

g(ey) =

d∏

j=1

(

−
1

〈b j, y〉
+

(

1

〈b j, y〉
+

es j(p)〈b j,y〉

1 − e〈b j,y〉

))
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instead. The second term in each factor is of the form

1

x
+

eux

1 − ex
=

1

x
+

1

x

x eux

1 − ex

=
1

x
−

∞∑

k=0

b(k, u)

k!
xk−1

= −

∞∑

k=1

b(k, u)

k!
xk−1

= −

∞∑

k=0

b(k + 1, u)

(k + 1)!
xk,

with b(k, u) the Bernoulli polynomials. The second line follows from (5.38) and the

third line follows from b(0, u) = 1. We therefore have

g(ey) =

d∏

j=1



−
1

〈b j, y〉
−

∞∑

k=0

b(k + 1, s j(p))

(k + 1)!
〈b j, y〉

k





=

d∏

j=1









∑

n≥0

(−1)1+
∑

nk

(∑

nk

n

)
b′

j
n

b
1+

∑

nk

j f j

y′n

y
1+

∑

nk

f j




−

∑

n≥0

b(1 +
∑

nk, s j(p))

(1 +
∑

nk)
∏

nk!
bn

j y
n




,

where b j f j
is the first non-zero coefficient of b j and the vector b′

j
contains the subse-

quent d − f j coefficients of b j. The expansion of the first term follows from (5.49),

while the expansion of the second term follows from (5.48). Note, however, that unlike

subsection 5.15, each factor is now a sum of two series instead of a product of two

series. In particular, there are two kinds of (non-overlapping) terms. In the first kind

of terms, there is exactly one variable y f j
with a negative exponent, where f j is such

that b j f j
is the first non-zero coefficient of b j, and the sum of all exponents is −1. Let

n contain the non-negative exponents, then the coefficient of such a term is

(−1)1+
∑

nk

(∑

nk

n

)
b′

j
n

b
1+

∑

nk

j f

. (5.51)

In the second kind of terms, all exponents are non-negative and the coefficient is given

by

−
∑

n≥0

b(1 +
∑

nk, s j(p))

(1 +
∑

nk)
∏

nk!
bn

j . (5.52)

Given, as before, a polynomial

q(y,p) =
∑

m

βm(p) ym

that we wish to sum over the integer points of a polytope P, we perform the following

operations for each unimodular cone in the decomposition of each vertex cone.

• For each m with βm(p) , 0
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– Consider all decomposition m =
∑

j n j such that each n j corresponds to

one of the two kinds of terms, i.e., either n j f j
< 0 and

∑

k n jk = −1 or

n j ≥ 0.

– For each such decomposition, compute the coefficient αm(p) of ym as the

product of the corresponding coefficients from (5.51) and (5.52).

• The contribution of the cone is the sum of

m!α(m)

over all these m.

Example 5.53 As in Example 5.50, let us compute

∑

y∈T∩Z2

y2
1 + y2

2,

with T a triangle with generating function

f (T ; x) =
x2

1

(1 − x−1
1

)(1 − x−1
1

x2)
+

x2
2

(1 − x−1
2

)(1 − x1x−1
2

)
+

1

(1 − x1)(1 − x2)
.

Consider the first term. As before, we write the exponent of the numerator of this term

as (2, 0) = −2 (−1, 0) + 0 (−1, 1) and so we obtain

h(y) =

(

1

y1

+

(

1

−y1

+
e(−2)(−y1)

1 − e−y1

)) (

1

y1 − y2

+

(

1

−y1 + y2

+
e0(−y1+y2)

1 − e−y1+y2

))

=





1

y1

+

∞∑

n=0

b(n + 1,−2)

(n + 1)n!
(−1)n+1yn

1









∑

n≥0

(−1)n+1

(

n

n

)

1n

−11+n

yn
2

y1+n
1

+
∑

n≥0

b(1 + n1 + n2, 0)

(1 + n1 + n2)n1!n2!
(−1)n1 1n2 y

n1

1
y

n2

2





=

(

1

y1

+
5

2
+

37

12
y1 +

5

2
y2

1 +
1079

702
y3

1 + . . .

)





1

y1

+
y2

y2
1

+
y2

2

y3
1

+ . . . +
1

2
+

1

12
y1 −

1

12
y2 + 0y2

1 +
1

6
y1y2 −

1

12
y2

2 −
1

720
y3

1 +
1

240
y2

1y2 + . . .



 .

The coefficient of y2
1

is then

1(−
1

720
) + 0 +

37

12

1

12
+

5

2

1

2
+

1079

720
1 =

721

240
,

which is the same value as the one we found in Example 5.50.

To compare the difference between the old implementation described in subsec-

tion 5.15 and the new implementation described here, we repeat the experiments of Ver-

doolaege and Bruynooghe (2008). The new experiments were performed on the same
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Figure 5.54: Execution times for summing a monomial over a difficult non-parametric

triangle

hardware (Intel Core2) as the old experiments, but using barvinok version barvinok-0.28-45-ga380232.

It should be noted that the running times reported by Verdoolaege and Bruynooghe

(2008) had been mistakenly scaled down by a factor of 0.6. The experiments were cut

off at 10 minutes (600 seconds). The new results are shown in Figures 5.54 and 5.55.

The time measuring resolution is 0.01s, so very short execution times are not measured

very accurately, resulting in some anomalies in the graphs. In the non-parametric tri-

angle experiment in Figure 5.54, the new Laurent methods is by far the best. For the

parametric triangle, Euler-Maclaurin still beats Laurent, but the new version is getting

much closer than the old version.

5.17 Conversion to “standard form”

Some algorithms or tools expect a polyhedron to be specified in “standard form”, i.e.,






Ax = b

x ≥ 0.
(5.56)

Given an arbitrary (parametric) polyhedron

{ x | Ax + b(p) ≥ 0 }, (5.57)

a conversion to standard form requires the introduction of slack variables and a way of

dealing with variables of unrestricted sign. In this section we will be satisfied with a
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Figure 5.55: Execution times for summing a monomial over a difficult parametric tri-

angle

reduction to the form





Ax = b

Dx ≥ c,
(5.58)

with D a diagonal matrix with positive entries. That is, we do not necessarily make all

variables non-negative, but we do ensure that they have a lower bound. If needed, a

subsequent reduction can then be performed.

The standard way of dealing with variables of unrestricted sign is to replace a vari-

able x of unknown sign by the difference (x = x′ − x′′) of two non-negative variables

(x′, x′′ ≥ 0). However, some algorithms are somewhat sensitive with respect to the

number of variables and so we would prefer to introduce as few extra variables as pos-

sible. We will therefore apply a unimodular transformation on the variables such that

all transformed variables are known to be non-negative.

The first step is to compute the HNF of A, i.e., a matrix H = AU, with U unimod-

ular, in column echelon form such that the first entry in each column is positive and

the other entries on the corresponding row are non-negative and strictly smaller than

this first entry. By reordering the rows we may assume that the top square part of H is

lower-triangular. By a further unimodular transformation, the entries below the diago-

nal can be made non-positive and strictly smaller (in absolute value) than the diagonal

entry of the same row.

For each of the new variables, we can take a positive combination of the corre-

sponding row and the previous rows to obtain a positive multiple of the corresponding

unit vector, implying that the variable has a lower bound. A slack variable can then be
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introduced for each of the rows in the top square part of H′ that is not already a positive

multiple of a unit vector and for each of the rows below the top square part of H′.

Example 5.59 Consider the cone

{

x |

[

67 −13

−52 53

]

x ≥ 0

}

.

This cone is already situated in the first quadrant, but this may not be obvious from

the constraints. Furthermore, directly adding slack variables would lead to a total

of 4 variables, whereas we can also represent this cone in standard form with only 3

variables. We have

H′ =

[

1 0

−1331 2875

]

=

[

67 −13

−52 53

] [

−6 13

−31 57

]

= AU′.

Adding a slack variable for the second row of H′, we obtain the equivalent problem






[

−1331 2875 −1
]

x′ = 0

x′ ≥ 0

with

x =

[

−6 13 0

−31 57 0

]

x′.

A similar construction was used by Eisenbrand (2000, Lemma 3.10) and Hung and

Rom (1990).

5.18 Using TOPCOM to compute Chamber Decompositions

In this section, we describe how to use the correspondence between the regular triangu-

lations of a point set and the chambers of the Gale transform of the point set (Gelfand

et al. 1994) to compute the chamber decomposition of a parametric polytope. This

correspondence was also used by Pfeifle and Rambau (2003) Eisenschmidt and Köppe

(2007).

Let us first assume that the parametric polytope can be written as






x ≥ 0

A x ≤ b(p),
(5.60)

where the right hand side b(p) is arbitrary and may depend on the parameters. The first

step is to add slack variables s to obtain the vector partition problem






A x + I s = b(p)

x, s ≥ 0,

with I the identity matrix. Then we compute the (right) kernel K of the matrix
[

A I
]

,

i.e., [

A I
]

K = 0
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and use TOPCOM’s points2triangs to compute the regular triangulations of the points

specified by the rows of K. Each of the resulting triangulations corresponds to a cham-

ber in the chamber complex of the above vector partition problem. Each simplex in a

triangulation corresponds to a parametric vertex active on the corresponding chamber

and each point in the simplex (i.e., a row of K) corresponds to a variable (x j or s j) that

is set to zero to obtain this parametric vertex. In the original formulation of the prob-

lem (5.60) each such variable set to zero reflects the saturation of the corresponding

constraint (x j = 0 for x j = 0 and 〈a j, x〉 = b j(p) for s j = 0). A description of the

chamber can then be obtained by plugging in the parametric vertices in the remaining

constraints.

Example 5.61 Consider the parametric polytope

P(p, q, r) = { (i, j) | 0 ≤ i ≤ p∧0 ≤ j ≤ 2i+q∧0 ≤ k ≤ i− p+r∧ p ≥ 0∧q ≥ 0∧r ≥ 0 }.

The constraints involving the variables are










1

1

1









i

j

k





≥

≥

≥

0

0

0




1 0 0

−1 0 1

−2 1 0









i

j

k





≤

≤

≤

p

q

−p + r

We have





1 0 0 1 0 0

−1 0 1 0 1 0

−2 1 0 0 0 1









−1 0 0

−2 0 −1

−1 −1 0

1 0 0

0 1 0

0 0 1





= 0

Computing the regular triangulations of the rows of K using TOPCOM, we obtain

> cat e2.topcom

[

[ -1 0 0 ]

[ -2 0 -1 ]

[ -1 -1 0 ]

[ 1 0 0 ]

[ 0 1 0 ]

[ 0 0 1 ]

]

> points2triangs --regular < e2.topcom

T[1]:={{0,1,2},{1,2,3},{0,1,4},{1,3,4},{0,2,5},{2,3,5},{0,4,5},{3,4,5}};

T[2]:={{1,2,3},{1,3,4},{2,3,5},{3,4,5},{1,2,5},{1,4,5}};

T[3]:={{1,2,3},{1,3,4},{2,3,5},{3,4,5},{1,2,4},{2,4,5}};
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We see that we have three chambers in the decomposition, one with 8 vertices and

two with 6 vertices. Take the second vertex (“{1,2,3}”) of the first chamber. This

vertex corresponds to the saturation of the constraints j ≥ 0, k ≥ 0 and i ≤ p, i.e.,

(i, j, k) = (p, 0, 0). Plugging in this vertex in the remaining constraints, we see that it is

only valid in case p ≥ 0, r ≥ 0 and 2p + q ≥ 0. For the remaining vertices of the first

chamber, we similarly find

{0,1,2} (0, 0, 0) p ≥ 0, −q + r ≥ 0 and q ≥ 0

{1,2,3} (p, 0, 0) p ≥ 0, r ≥ 0 and 2p + q ≥ 0

{0,1,4} (0, 0,−p + r) −q + r ≥ 0, p ≥ 0 and q ≥ 0

{1,3,4} (p, 0, r) p ≥ 0, r ≥ 0 and 2p + q ≥ 0

{0,2,5} (0, q, 0) q ≥ 0, p ≥ 0 and −q + r ≥ 0

{2,3,5} (p, 2p + q, 0) p ≥ 0, 2p + q ≥ 0 and r ≥ 0

{0,4,5} (0, q,−p + r) q ≥ 0, −q + r ≥ 0 and p ≥ 0

{3,4,5} (p, 2p + q, r) p ≥ 0, 2p + q ≥ 0 and r ≥ 0

Combining these constraints with the initial constraints of the problem on the parame-

ters p ≥ 0, q ≥ 0 and r ≥ 0, we find the chamber { (p, q, r) | p ≥ 0∧−p+r ≥ 0∧q ≥ 0 }.

For the second chamber, we have
{1,2,3} (p, 0, 0) p ≥ 0, r ≥ 0 and 2p + q ≥ 0

{1,3,4} (p, 0, r) p ≥ 0, r ≥ 0 and 2p + q ≥ 0

{2,3,5} (p, 2p + q, 0) p ≥ 0, 2p + q ≥ 0 and r ≥ 0

{3,4,5} (p, 2p + q, r) p ≥ 0, 2p + q ≥ 0 and r ≥ 0

{1,2,5} (−
q

2
, 0, 0) −q ≥ 0, 2p + q ≥ 0 and −2p − q + 2r ≥ 0

{1,4,5} (−
q

2
, 0,−p −

q

2
+ r) −q ≥ 0, −2p − q + 2r ≥ 0 and 2p + q ≥ 0

The chamber is therefore { (p, q, r) | q = 0 ∧ p ≥ 0 ∧ −p + r ≥ 0 }. Note that by

intersecting with the initial constraints this chamber is no longer full-dimensional and

can therefore be discarded. Finally, for the third chamber, we have

{1,2,3} (p, 0, 0) p ≥ 0, r ≥ 0 and 2p + q ≥ 0

{1,3,4} (p, 0, r) p ≥ 0, r ≥ 0 and 2p + q ≥ 0

{2,3,5} (p, 2p + q, 0) p ≥ 0, 2p + q ≥ 0 and r ≥ 0

{3,4,5} (p, 2p + q, r) p ≥ 0, 2p + q ≥ 0 and r ≥ 0

{1,2,4} (p − r, 0, 0) p − r ≥ 0, r ≥ 0 and 2p + q − 2r ≥ 0

{2,4,5} (p − r, 2p + q − 2r, 0) p − r ≥ 0, 2p + q − 2r ≥ 0 and r ≥ 0

The chamber is therefore { (p, q, r) | p − r ≥ 0 ∧ q ≥ 0 ∧ r ≥ 0 }.

Now let us consider general parametric polytopes. First note that we can follow the

same procedure as above if we replace x by x′ − c(p) in (5.60), i.e., if our problem has

the form





x′ ≥ c(p)

A x′ ≤ b(p) + Ac(p),
(5.62)

as saturating a constraint xi = 0 is equivalent to saturating the constraint x′
i
= ci(p) and,

similarly, 〈a j, x〉 = b j(p) is equivalent to 〈a j, x
′〉 = b j(p) + 〈a j, c(p)〉.

In the general case, the problem has the form

Ax ≥ b(p)

and then we apply the technique of subsection 5.17. Let A′ be a non-singular square

submatrix of A with the same number of columns and compute the (left) HNF H =
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A′U with U unimodular and H lower-triangular with non-positive elements below the

diagonal. Replacing x by Ux′, we obtain






Hx′ ≥ b′(p)

−A′′U x′ ≤ −b′′(p),

with A′′ the remaining rows of A and b(p) split in the same way. If H happens to be

the identity matrix, then our problem is of the form (5.62) and we already know how

to solve this problem. Note that, again, saturating any of the transformed constraints in

x′ is equivalent to saturating the corresponding constraint in x. We therefore only need

to compute −A′′U for the computation of the kernel K. To construct the parametric

vertices in the original coordinate system, we can simply use the original constraints.

The same reasoning holds if H is any diagonal matrix, since we can virtually replace

Hx by x′ without affecting the non-negativity of the variables.

If H is not diagonal, then we can introduce new constraints x′
j
≥ d(p), where

d(p) is some symbolic constant. These constraints do not remove any solutions since

each row in H expresses that the corresponding variable is greater than or equal to a

non-negative combination of the previous variables plus some constant. We can then

proceed as before. However, to reduce unnecessary computations we may remove

from K the rows that correspond to these new rows. Any solution saturating the new

constraint, would also saturate the corresponding constraint hT

j
and all the constraints

corresponding to the non-zero entries in hT

j
. If a chamber contains a vertex obtained by

saturating such a new constraint, it would appear multiple times in the same chamber,

each time combined with different constraints from the above set. Furthermore, there

would also be another (as it turns out, identical) chamber where the vertex is only

defined by the other constraints.

Example 5.63 Consider the parametric polytope

P(n) = { (i, j) | 1 ≤ i ∧ 2i ≤ 3 j ∧ j ≤ n }.

The constraints are 



1 0

−2 3

0 −1





[

i

j

]

≥





1

0

−n




.

The top 2 × 2 submatrix is already in HNF. We have 3 j ≥ 2i ≥ 2, so we can add a

constraint of the form j ≥ c(n) and obtain

[

A I
]

=

[

0 1 1 0

2 −3 0 1

]

,

while K with
[

A I
]

K = 0 is given by

[

0 1 1 0

2 −3 0 1

]





1 0

0 1

0 −1

−2 3





.
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The second row of K corresponds to the second variable, which in turn corresponds to

the newly added constraint. Passing all rows of K to TOPCOM we would get

> points2triangs --regular <<EOF

> [[1 0],[0,1],[0,-1],[-2,3]]

> EOF

T[1]:={{0,1},{0,2},{1,3},{2,3}};

T[2]:={{0,2},{2,3},{0,3}};

T[3]:={};

The first vertex in the first chamber saturates the second row (row 1) and therefore

saturates both the first (0) and fourth (3) and it appears a second time as {1,3}.

Combining these “two” vertices into one as {0,3} results in the second (identical)

chamber. Removing the row corresponding to the new constraint from K we remove

the duplicates

> points2triangs --regular <<EOF

> [[1 0],[0,-1],[-2,3]]

> EOF

T[1]:={{0,1},{1,2},{0,2}};

T[2]:={};

Note that in this example, we also could have interchanged the second and the third

constraint and then have replaced j by − j′.

In practice, this method of computing a chamber decomposition does not seem to

perform very well, mostly because TOPCOM can not exploit all available information

about the parametric polytopes and will therefore compute many redundant triangula-

tions/chambers. In particular, any chamber that does not intersect with the parameter

domain of the parametric polytope, or only intersects in a face of this parameter do-

main, is completely redundant. Furthermore, if the parametric polytope is not simple,

then many different combinations of the constraints will lead to the same parametric

vertex. Many triangulations will therefore correspond to one and the same chamber

in the chamber complex of the parametric polytope. For example, for a dilated octa-

hedron, TOPCOM will compute 150 triangulations/chambers, 104 of which are empty,

while the remaining 46 refer to the same single chamber.

5.19 Computing the Hilbert basis of a cone

To compute the Hilbert basis of a cone, we use the zsolve library from 4ti2 (Hem-

mecke et al. ), which implements the technique of Hemmecke (2002). We first remove

all equalities from the cone through unimodular transformations and then apply the

technique of subsection 5.17 to put the cone in “standard form”. Note that for a (non-

parametric) cone the constant term b in (5.57) is 0. The constraints Dx ≥ c = 0 of

(5.58) are therefore equivalent to x ≥ 0.
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5.20 Integer Feasibility

For testing whether a polytope P ⊂ Qd contains any integer points, we use the technique

of Cook et al. (1993), based on generalized basis reduction.

The technique basically looks for a “short vector” c in the lattice Zd, where short-

ness is measured in terms of the width of the polytope P along that direction,

widthc P = max{ 〈c, x〉 | x ∈ P } −min{ 〈c, x〉 | x ∈ P }

= max{ 〈c, x − y〉 | x, y ∈ P }.

The lattice width is the minimum width over all non-zero integer directions:

width P = min
c∈Zd\{0}

widthc P.

If the dimension d is fixed then the lattice width of any polytope P ⊂ Qd containing

no integer points is bounded by a constant (Lagarias et al. 1990; Barvinok 2002; Ba-

naszczyk et al. 1999). If we slice the polytope using hyperplanes orthogonal to a short

direction, i.e., a direction where the width is small, we will therefore only need to in-

spect “few” of them before either finding one with an integer point, or running out of

hyperplanes, meaning that the polytope did not contain any integer points. Each slice

is checked for integer points by applying the above method recursively.

A nice feature of this technique is that it will not only tell you if there is any integer

point in the given polytope, but it will actually compute one if there is any.

The short vector is obtained as the first vector of a “reduced basis” of the lattice Zd

with respect to the polytope. In particular, the first vector b1 of this reduced basis will

satisfy

widthb1
P ≤

width P
(

1
2
− ε

)d−1
,

with 0 < ε < 1/2 a fixed constant. That is, the width in direction b1 is no more than

a constant factor bigger than the lattice width. See (Cook et al. 1993) for details. In

our implementation we use ε = 1/4. When used in the above integer feasibility testing

algorithm, we will also terminate the reduced basis computation as soon as the width

along the first basis vector is smaller than 2. This means that there will be at most 2

slices orthogonal to the chosen direction.

The computation of the above reduced basis requires the solution of many linear

programs, for which we use any of the following external solvers:

• GLPK (Makhorin 2006)

This solver is based on double precision floating point arithmetic and may there-

fore not be suitable if the coefficients of the constraints describing the polytope

are large.

• cdd (Fukuda 1993)

This solver is based on exact integer arithmetic. Note that you need version

cddlib 0.94e or newer. Earlier versions (0.93–0.94d) have a bug that may

sometimes result in a polytope being reported as (rationally) empty even though

it is not.
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The LP solver to use can be selected with the --gbr option.

5.21 Computing the integer hull of a polyhedron

For computing the integer hull of a polyhedron, we first describe how to compute the

convex hull of a set given as an oracle for optimizing a linear objective function over

the set and then we explain how to optimize a linear objective function over the integer

points of a polyhedron. Applying the first with the second as optimization oracle yields

a method for computing the requested integer hull.

5.21.1 Computing the convex hull based on an optimization oracle

The algorithm described below is presented by Cook et al. (1992, Remark 2.5) as an

extension of the algorithm by Edmonds et al. (1982, Section 3) for computing the di-

mension of a polytope for which only an optimization oracle is available. The algorithm

is described in a bit more detail by Eisenbrand (2000) and reportedly stems from Hart-

mann (1989). Essentially the same algorithm has also been implemented by Huggins

(2006), citing beneath/beyond (Preparata and Shamos 1985) as his inspiration.

The algorithm start out from an initial set of points from the set S . After computing

the convex hull of this set of points, we take one of its bounding constraints and use

the optimization oracle to compute an optimal point in S (but on the other side of the

bounding hyperplane) along the outer normal of this bounding constraint. If a new

point is found, it is added to the set of points and a new convex hull is computed, or

the old one is adapted in a beneath/beyond fashion. Otherwise, the chosen bounding

constraint is also a bounding constraint of S and need not be considered anymore. The

process continues until all bounding constraints in the description of the current convex

hull have been considered.

In principle, the initial set of points in the above algorithm may be empty, with

a “convex hull” described by a set of conflicting constraints and each equality in the

description of any intermediate lower-dimensional convex hull being considered as a

pair of bounding constraints with opposite outer normals. However, in our implemen-

tation, we have chosen to first compute a maximal set of affinely independent points by

first taking any point from S and then adding points from S not on one of the equal-

ities satisfied by all points found so far. This allows us to not have to worry about

equalities in the main algorithm. In the case of the computation of the integer hull,

finding these affinely independent points can be accomplished using the technique of

subsection 5.20.

Example 5.65 Assume we want to compute the integer hull of the polytope in the left

part of Figure 5.64. We first compute a set of three affinely independent points, shown

in the same part of the figure. Of the three facets of the corresponding convex hull,

optimization along the outer normal (depicted by an arrow in the figure) of only one

facet will yield any additional points. The other two are therefore facets of the integer

hull. Optimization along the above outer normal may yield any of the points marked

by a ◦. Assuming it is the bottom one, we end up with the updated convex hull in the

middle of the figure. This convex hull has only one new facet. Adding the point found
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Figure 5.64: The integer hull of a polytope

by optimizing over this facet’s outer normal, we obtain the convex hull on the right of

the figure. There are two new facets, but neither of them yields any further points. We

have therefore found the integer hull of the polytope.

5.21.2 Optimization over the integer points of a polyhedron

We assume that we want to find the minimum of some linear objective function. When

used in the computation of the integer hull of some polytope, the objective function

will therefore correspond to the inner normal of some facet.

During our search for an optimal integer point with respect to some objective func-

tion, we will keep track of the best point so far as well as a lower bound l and an upper

bound u such that the value at the optimal point (if it is better than the current best) lies

between those two bounds. Initially, there is no best point yet and values for l and u

may be obtained from optimization over the linear relaxation. When used in the com-

putation of the integer hull of some polytope, the upper bound u is one less than the

value attained on the given facet of the current approximation.

As long as l ≤ u, we perform the following steps

• use the integer feasibility technique of subsection 5.20 to test whether there is

any integer point with value in [l, u′], where u′ is

– u if the previous test for an integer point did not produce a point

– l +
⌊

u−l−1
2

⌋

if the previous test for an integer point did produce a point

• if a point is found, then remember it as the current best and replace u by the value

at this point minus one,

• otherwise, replace l by u′ + 1.

When used in the computation of the integer hull of some polytope, it is useful to not

only keep track of the best point so far, but of all points found. These points will all lie

outside of the current approximation of the integer hull and adding them all instead of

just one, will typically get us to the complete integer hull quicker.
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Figure 5.66: The integer points of a polytope projected on an objective function

Example 5.67 Assume that the values of some objective function attained by the in-

teger points of some polytope are as shown in Figure 5.66 and assume we know that

the optimal value lies between 1 and 16. In the first step we would look for a point

attaining a value in the interval [1, 16]. Suppose this yields a point attaining the value

8 (second line of the figure). We record this point as the current best and update the

search interval to [1, 7]. In the second step, we look for a point attaining a value in the

interval [1, 4], but find nothing and set the search interval to [5, 7]. In the third step,

we consider the interval [5, 7] and find a point attaining the value 6. We update the

current best value and set the search interval to [5, 5]. In the fourth step, we consider

the interval [5, 5], find no points and update the interval to “[6, 5]”. Since the lower

bound is now larger than the upper bound, the algorithm terminates, returning the best

or all point(s) found.

5.22 Computing the integer hull of a truncated cone

In subsection 5.23 we will need to compute the integer hull of a cone with the origin

removed (C \ {0}).

5.22.1 Using the Hilbert basis of the cone

As proposed by Köppe (2007), one way of computing this integer hull is to first com-

pute the Hilbert basis of C (see subsection 5.19) and to then remove from that Hilbert

basis the points that are not vertices of the integer hull of C \ {0}. The Hilbert basis of

C is the minimal set of points bi ∈ C ∩ Zd such that every integer point x ∈ C ∩ Zd

can be written as a non-negative integer combination of the bi. The vertices v j of the

integer hull of C \ {0} are such that every integer point x ∈ (C ∩Zd) \ {0} can be written

as s non-negative rational combination of v j. Clearly, any v j is also a bi since v j can

not be written as the sum of a (rational) convex combination of other integer points in

(C ∩ Zd) \ {0} and a non-negative combination of the extremal rays rk of C. A fortiori,

it can therefore not be written as an integer combination of other integer points in C.

To obtain the v j from the bi we therefore simply need to remove first (0, 0) and then

those bi that are not an extremal ray and that can be written as a combination

bi =
∑

j,i

α jb j +
∑

k

βkrk with α j, βk ≥ 0 and
∑

j,i

α j = 1.
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Figure 5.68: The Hilbert basis and the integer hull of a truncated cone

Since the rk are also among the b j, this can be simplified to checking whether there

exists a rational solution for α j to

bi =
∑

j,i

α jb j with α j ≥ 0 and
∑

j,i

α j ≥ 1.

Example 5.69 Consider the cone

C = pos {(2,−3), (3, 4)},

shown in Figure 5.68. The Hilbert basis of this cone is

{(0, 0), (2,−3), (3, 4), (1, 1), (1,−1), (1, 0)}.

We have (1, 0) = 1
2
(1, 1) + 1

2
(1,−1), while (1, 1) and (1,−1) can not be written as

overconvex combinations of the other bi , 0. The vertices of the integer hull of C \ {0}

are therefore

{(2,−3), (3, 4), (1, 1), (1,−1)}.
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Figure 5.70: The integer hull of a truncated cone

5.22.2 Using generalized basis reduction

Another way of computing the integer hull of a truncated cone is to apply the method

of subsection 5.21. In this case, the initial set of points will consist of (the smallest

integer representatives of) the extremal rays of the cone, together with the extremal

rays themselves. That is, if C = pos {r j} with r j ∈ Z
d, then our initial approximation of

the integer hull of C \ {0} is

conv {r j} + pos {r j}.

Furthermore, we need never consider any of the bounding constraints that are also

bounding constraints of the original cone. When optimizing along the normal of any of

the other facets, we can take the lower bound to be 1. This will ensure that the origin

is excluded, without excluding any other integer points.

Example 5.71 Consider once more the cone

C = pos {(2,−3), (3, 4)}

from Example 5.69. The initial approximation is

C = conv {(2,−3), (3, 4)} + pos {(2,−3), (3, 4)},

which is shown on the left of Figure 5.70. The only bounding constraint that does not

correspond to a bounding constraint of C is 7x − y ≥ 17. In the first step, we will

therefore look for a point minimizing 7x − y with values in the interval [1, 16]. All

values of this objective function in the given interval attained by points in C are shown

in Figure 5.66. From Example 5.67, we know that the optimal value is 6 and this cor-

responds to the point (1, 1). Adding this point to our hull, we obtain the approximation

in the middle of Figure 5.70. This approximation has two new facets. The bounding

constraint 3x − 2y ≥ 1 will not produce any new points since we would be looking for

one in the interval “[1, 0]”. The other new bounding constraint is 4x+ y ≥ 5. Minimiz-

ing 4x + y with values in the interval [1, 4], we find the minimal value 3 corresponding

to the point (1,−1). Adding this point, we obtain the complete integer hull shown on
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the right of Figure 5.70. Note that if in the first step we would have added not only the

point corresponding to the optimal value, but instead all points found in Example 5.67,

then we would have obtained the complete integer hull directly.

5.23 Computing the lattice width of a parametric polytope

To compute the lattice width of a parametric polytope, we essentially use the technique

of Eisenbrand and Shmonin (2007), which improves upon the technique of Kannan

(1992). Given a parametric polytope

P(p) = { x | Ax + b(p) ≥ 0 },

the width along a direction c is defined in the same way as for non-parametric polytopes

(see subsection 5.20),

widthc P(p) = max{ 〈c, x〉 | x ∈ P(p) } −min{ 〈c, x〉 | x ∈ P(p) }. (5.72)

The lattice width is the minimum width over all non-zero integer directions:

width P(p) = min
c∈Zd\{0}

widthc P(p).

We assume that the parameter domain Q of P(p), i.e., the set of parameter values for

which P(p) , ∅, is full-dimensional and that for each p from the interior of Q, P(p) is

also full-dimensional.

Clearly, for any given direction c, the minimum and maximum in (5.72) are attained

at (different) vertices of P(p). The idea of the algorithm is then to consider all pairs

of parametric vertices of P(p), to compute all candidate integer directions for a given

pair of vertices and then to compute the minimum width over all candidate integer

directions found.

For any given parametric vertex v(p), the (rational) directions for which this ver-

tex is minimal can be found as follows. Let v(p) + C be the vertex cone of v(p). If

v(p) is minimal for c, then all other points in the vertex cone must yield a bigger or

equal value, i.e., 〈y, c〉 ≥ 0 for all y ∈ C. The set of directions is therefore the po-

lar cone C∗ of C. Note that, in principle, we should only do this for pairs of vertices

that have a common activity domain, where the activity domains have been partially

opened using the technique of Theorem 5.12 to avoid multiple vertices that coincide on

a lower-dimensional chamber to all be considered on this intersection. However, this

optimization has currently not been implemented.

Given a pair of vertices v1(p) and v2(p), we may assume that v1(p) attains the mini-

mum and v2(p) attains the maximum. If v1(p)+C1 and v2(p)+C2 are the corresponding

vertex cones, then the set of (rational) directions for this pair of vertices is

C1,2 =
(

C∗1 ∩ −C∗2
)

\ {0}.

The set of candidate integer directions are therefore the vertices of the integer hull of

C1,2, which can be computed as explained in subsection 5.22. To see this, note that by

construction 〈c, v1(p)〉 ≤ 〈c, v2(p)〉 and so

wc(p) = widthc P(p) = 〈c, v2(p) − v1(p)〉 ≥ 0.
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Figure 5.73: A polytope and its candidate width directions

Any integer direction in C1,2 will therefore yield a width that is at least as large as

that of one of the vertices of the integer hull. Note that when using generalized basis

reduction to compute the integer hull of these cones as in subsubsection 5.22.2, it can

be helpful to use as vertices for the initial approximation not only the extremal rays of

the cone, but also those vertices of previously computed integer hulls that are elements

of the current cone.

After computing a list of all possible candidate width directions ci and the corre-

sponding widths wci
(p), we keep only a single direction of all those that yield the same

width (as an affine function of the parameters). Then we construct the chambers where

each of the widths is minimal, i.e.,

Ci = {p ∈ Q | ∀ j : wci
(p) ≤ wc j

(p) }.

Note that many of the Ci may be empty or of lower dimension than Q and that the

other Ci will intersect in common facets. To obtain a partition of partially-open full-

dimensional chambers, we proceed as in subsection 5.4.
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Figure 5.75: The cone of directions C2,1

Example 5.74 Consider the (non-parametric) polytope

P =






x |

−3x1 + 5x2 ≥ 0

4x1 − 5x2 ≥ 0

x1 − 2x2 + 3 ≥ 0

−3x1 + 4x2 + 3 ≥ 0






shown in Figure 5.73. The polytope has four vertices

v1 = (9, 6)

v2 = (5, 4)

v3 = (0, 0)

v4 = (5, 3).

The corresponding cones of directions (for the given vertex to attain the minimum),

also shown in Figure 5.73 are

C∗1 = pos {(−3, 4), (1,−2)}

C∗2 = pos {(4,−5), (1,−2)}

C∗3 = pos {(4,−5), (−3, 5)}

C∗4 = pos {(−3, 5), (−3, 4)}.

Let us now consider the directions in which v2 is minimal while v1 is maximal. We

find

C2,1 = pos {(4,−5), (3,−4)} \ {0},
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Figure 5.76: The cone of directions C3,1

Figure 5.77: The cone of directions C4,1
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as shown in Figure 5.75. The vertices of the integer hull of C2,1 are (4,−5) and (3,−4).

The corresponding widths are

c1 = (4,−5) wc1
= 6

c2 = (3,−4) wc2
= 4.

We similarly find

C3,1 = pos {(4,−5), (−1, 2)} \ {0},

with integer hull pos {(4,−5), (−1, 2), (1,−1)}, shown in Figure 5.76, yielding

c3 = (4,−5) wc3
= 6

c4 = (−1, 2) wc4
= 3

c5 = (1,−1) wc5
= 3.

On the other hand,

C4,1 = ∅,

as shown in Figure 5.77 and so this combination does not yield any width direction

candidates. The other pairs of vertices further yield

c6 = (−1, 2) wc6
= 3

c7 = (−3, 5) wc7
= 5

c8 = (−3, 4) wc8
= 4

c9 = (−3, 5) wc9
= 5

c10 = (−2, 3) wc10
= 3.

Since the polytope under consideration is not parametric, there is only one (non-empty,

0-dimensional) chamber and it corresponds to one of the directions, say c4 = (−1, 2),

with width 3 (the other directions with the same width having been removed).

Each of the three directions that yield the minimal width of 3 is shown in Fig-

ure 5.78.

Example 5.79 Consider the polytope

P(p) =






x |

−2x1 + p + 5 ≥ 0

2x1 + p + 5 ≥ 0

−2x2 − p + 5 ≥ 0

2x2 − p + 5 ≥ 0






from Woods (2004, Example 2.1.7). The parametric vertices are

v1(p) =

(

p + 5

2
,
−p + 5

2

)

v2(p) =

(

p + 5

2
,

p − 5

2

)

v3(p) =

(

−p − 5

2
,
−p + 5

2

)

v4(p) =

(

−p − 5

2
,

p − 5

2

)

.
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Figure 5.78: A polytope and its lattice width directions

We find two essentially different candidate width directions

c1 = (0, 1) wc1
(p) = 5 − p

c2 = (1, 0) wc2
(p) = 5 + p.

The first direction can be found by combining, say, v1(p) and v2(p), while the second

direction can be found by combining, say, v1(p) and v3(p). The parameter domain for

the parametric polytope P(p) is

Q = { p | −5 ≤ p ≤ 5 }.

The two (closed) chambers are therefore

C1 = { p ∈ Q | 5 − p ≤ 5 + p }

C2 = { p ∈ Q | 5 + p ≤ 5 − p }.

To obtain a partition, subsection 5.1 gives the internal point (0, 0), which happens to

meet the facets p ≥ 0 and −p ≥ 0. We therefore keep the facet with positive (inner)

normal closed and open up the other facet. The result is

Ĉ1 = { p | 0 ≤ p ≤ 5 }

Ĉ2 = { p | −5 ≤ p < 0 }.

Since we are usually only interested in integer parameter values, the latter chamber

would become Ĉ2 = { p | −5 ≤ p ≤ −1 }.
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Our description differs slightly from that of of Eisenbrand and Shmonin (2007).

First, they consider all pairs of basic solutions instead of all pairs of vertices, which

means that they may consider basic solutions that are never feasible and that, in case of

a non-simple polytope, they may consider the same parametric vertex more than once.

The set of integer directions for a pair of vertices is the intersection of the sets of integer

directions they obtain for each of the corresponding basic solutions. Second, they use

a different method of creating a partition of partially-open chambers, which may lead

to some lower-dimensional chambers surviving and hence to a larger total number of

chambers.

5.24 Testing whether a set has an infinite number of points

In some situations we are given the generating function of some integer set and we

would like to know if the set is infinite or not. Typically, we want to know if the set

is empty or not, but we cannot simply count the number of elements in the standard

way since we may not have any guarantee that the set has only a finite number of

elements. We will consider the slightly more general case where we are given a rational

generating function f (x) of the form (5.26) such that

f (x) =
∑

s∈Q∩Zd

c(s) xs (5.80)

converges on some nonempty open subset of Cd, Q is a pointed polyhedron and c(s) ≥

0, and we want to compute

S =
∑

s∈Q∩Zd

c(s), (5.81)

where the sum may diverge, i.e., “S = ∞”. The following proposition shows that

we can determine S in polynomial time. For a sketch of an alternative technique, see

Woods (2005, Proof of Lemma 16).

Proposition 5.82 Fix d and k. Given a rational generating function of the form (5.26)

with ki ≤ k and a pointed polyhedron Q ⊂ Qd, then there is a polynomial time algo-

rithm that determines for the corresponding function c(s) (5.80) whether the sum (5.81)

diverges and computes the value of S (5.81) if it does not.

Proof Since Q is pointed, the series (5.80) converges on a neighborhood of eℓ =

(eℓ1 , . . . , eℓd ) for any ℓ such that 〈rk, ℓ〉 < 0 for any (extremal) ray rk of Q and such

that 〈bi j, ℓ〉 , 0 for any bi j in (5.26). Let α = −ℓ and perform the substitution x = tα.

The function g(t) = f (tα) is then also a (short) rational generating function and

g(t) =
∑

k∈〈α,Q〉∩Z





∑

s∈Q∩Zd

〈α,s〉=k

c(s)





tk =:
∑

k∈〈α,Q〉∩Z

d(k) tk,

with 〈α,Q〉 = {〈α, x〉 | x ∈ Q}, converges in a neighborhood of e−1, while

S =
∑

k∈〈α,Q〉∩Z

d(k).
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Since c(s) ≥ 0, we have d(k) ≥ 0 and the above sum diverges iff any of the coefficients

of the negative powers of t in the Laurent expansion of g(t) is non-zero. If the sum

converges, then the sum is simply the coefficient of the constant term in this expansion.

It only remains to show now that we can compute a suitable α in polynomial time,

i.e., an α such that 〈rk,α〉 > 0 for any (extremal) ray rk of Q and 〈bi j,α〉 , 0 for any

bi j in (5.26). By adding the rk to the list of bi j if needed, we can relax the first set of

constraints to 〈rk,α〉 ≥ 0. Let Q be described by the constraints Ax + c ≥ 0 and let

B be d × d non-singular submatrix of A, obtained by removing some of the rows of A.

Such a B exists since Q does not contain any straight line. Clearly, Br ≥ 0 for any ray

r of Q. Let b′
i j
= Bbi j, then since bi j , 0 and B is non-singular, we have b′

i j
, 0. We

may therefore find in polynomial time a point α′ ≥ 0 on the “moment curve” such that

〈b′
i j
,α′〉 , 0 (Barvinok and Pommersheim 1999, Algorithm 5.2). Let α = BTα′. Then

〈bi j,α〉 = 〈bi j, B
Tα′〉 = 〈Bbi j,α

′〉 = 〈b′
i j
,α′〉 , 0 and 〈rk,α〉 = 〈rk, B

Tα′〉 = 〈Brk,α
′〉 ≥

0, as required. Note that in practice, we would, as usual, first try a fixed number of

random vectors α′ ≥ 0 before resorting to looking for a point on the moment curve.

�

5.25 Enumerating integer projections of parametric polytopes

In this section we are interested in computing

c(s) = #
{

t ∈ Zd | ∃u ∈ Zm : (s, t,u) ∈ P
}

, (5.83)

with P ⊂ Qn × Qd × Qm a rational pointed polyhedron such that

Ps =
{

(t,u) ∈ Qd × Qm | (s, t,u) ∈ P
}

is a polytope for any s. This is equivalent to computing the number of points in the

integer projection of a parametric polytope

c(s) = #
(

π(Ps ∩ Z
d+m)

)

,

with π : Qd × Qm → Qd defined by π(t,u) = t. Exponential methods for computing

c(s) are described by Verdoolaege et al. (2005a) and Seghir and Loechner (2006). Here,

we provide some implementation details for the polynomial method of Barvinok and

Woods (2003, Theorem 1.7), for computing the generating function,
∑

s c(s) xs, which

can then be converted into an explicit function c(s) (Verdoolaege and Woods 2008,

Corollary 1.11). Note that in contrast to Barvinok and Woods (2003, Theorem 1.7),

we may allow P to be an unbounded (but still pointed) polyhedron here (as long as

Ps is bounded), since we replace their application of Kannan (1992, Lemma 3.1) by

Eisenbrand and Shmonin (2007, Theorem 5).

If there is only one existentially quantified variable (m = 1), then computing (5.83)

is easy. You simply shift P by 1 in the u direction and subtract this shifted copy from

the original,

D = P \ (en+d+1 + P).

(See, e.g., Barvinok and Woods (2003, Figure 1, page 973) or Verdoolaege (2005,

Figure 4.33, page 186).) In the difference D there will be exactly one value of u for
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each value of the remaining variables for which there was at least one value of u in P,

∀(s, t) : (∃u : (s, t, u) ∈ P) ⇐⇒ (∃!u : (s, t, u) ∈ D) .

The function c(s) can then be computed by counting the number of elements in D(s).

These operations can be performed either in the space of (unions of) parametric poly-

topes or on generating functions. In the first case, D(s) can be written as a disjoint

union of parametric polytopes that can be enumerated separately. In the second case,

we first compute the generating function f (x, y) of the set

S = {(s, t) | ∃u ∈ Z : (s, t, u) ∈ P}

and then obtain the generating function C(x) of c(s) as C(x) = f (x, 1). In the remainder

of this section, we will concentrate on the computation of the generating function of

S . To compute this generating function in the current case where there is only one

existentially quantified variable, we first compute the generating function g(x, y, z) of

P(s, t, u), perform operations on the generating function equivalent to the set opera-

tions (see, e.g., Verdoolaege (2005, Section 4.5.3)), resulting in a generating function

g′(x, y, z), and then sum over all values (at most one for each value of s and t) of u, i.e.,

f (x, y) = g′(c, y, 1).

If there is more than one existentially quantified variable (m > 1), then we can

in principle apply the above shifting and subtracting technique recursively to obtain a

generating function f (x, y) for the set

T = {(s, t) | ∃u ∈ Zm : (s, t,u) ∈ P} (5.85)

and then compute C(x) = f (x, 1). There are however some complications. Most no-

tably, after applying the technique in one direction and projecting out the corresponding

variable, the resulting set, i.e.,

S = {(s, t, u1, . . . , um−1) | ∃um ∈ Z : (s, t,u) ∈ P},

in general does not correspond to the integer points in some polytope. For example, as-

sume that the polytope in Figure 5.84 contains the values of u associated to a particular

value of (s, t). Since there are integer points in this polytope, we should count this value

of t, but only once. If we apply the above technique in the vertical direction (u2), then

we can compute (a generating function for) the set S shown on the bottom of the figure.

Note, however, that there are “gaps” in this set, i.e., if we compute S \ (en+d+1+S ) then

we will not end up with a single point (for this value of (s, t)). Since the biggest gap is

three wide, we need to compute

S \ (en+d+1 + S ) \ (2en+d+1 + S ) \ (3en+d+1 + S )

to obtain a single point. If we do the subtraction in the horizontal direction first, then

we end up with a set (shown on the left) with gaps at most two wide, so afterwards we

only need to subtract twice in the vertical direction.

In general, there is no bound on the widths of the gaps we may encounter in any

given direction. However, there are directions in which the gaps are known to be
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Figure 5.84: A polytope and its integer projections
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Figure 5.86: A transformed polytope and its integer projection
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“small”. In particular, if the dimension m is fixed, then the lattice width (see sub-

section 5.23) of lattice point free polytopes is bounded by a constant ω(m) (Lagarias

et al. 1990; Barvinok 2002; Banaszczyk et al. 1999). This means that in the direction

of the lattice width of a polytope, the gaps will be not be larger than ω(m) (Barvinok

and Woods 2003, Theorem 4.3). Otherwise, we would be able to put a (uniformly)

scaled down version of the polytope in the gap and it would contain no lattice points,

which would contradict the fact that its lattice width is bounded by ω(m). Figure 5.84

contains such a scaled down copy of the original polytope. However, neither the hori-

zontal nor the vertical direction is a lattice width direction of this polytope. The actual

lattice width of this polytope was computed in Example 5.74 as 3 with correspond-

ing direction c = (−1, 2). Figure 5.86 shows the result of applying the unimodular

transformation [

−1 2

0 1

]

to the polytope. Note that the horizontal direction now has gaps of width at most 1.

After shifting, subtracting and projecting in the vertical direction, we therefore end up

with a set S with gaps of width 1 and we then only have to shift and subtract once in

the remaining (horizontal) direction.

In fact, for two-dimensional polytopes the gaps in the lattice width direction will

always be one, as shown by the following lemma.

Lemma 5.87 For any rational polygon, the gaps in a lattice width direction are of

width at most 1.

Proof We may assume that x is the given lattice width direction of a given polygon P.

If there is a gap of width 2, then there is an integer value x1 of x such that P∩{ (x1, y) } ,

∅, P ∩ { (x1 + 2, y) } , ∅, while P ∩ { (x1 + 1, y) } ∩ Z2 = ∅. Using Barvinok and Woods

(2003, Lemma 4.2), we can put a scaled down copy P′ of P between x = x1 and

x = x1 + 2 (and inside of P). P′ meets the line x = x1 + 1 between two consecutive

integer points, y1 and y1 + 1. Let P′′ be the polygon bounded by x = x1 and x = x1 + 2

and two lines that separate P′ from these two integer points. P′′ will have the same

width (2) in the x direction, while P′ ⊂ P′′. The x direction is therefore also a lattice

width direction of P′′. P′′ cannot intersect both x = x1 and x = x1 + 2 in a segment

of length greater than or equal to 1. Otherwise, it would also intersect x = x1 + 1 in a

segment of length greater than or equal to 1.

We may therefore assume that the length of the intersection of P′′ with x = x1 is

smaller than 1. If this line segment contains an integer point, then call it y2. Otherwise,

let y2 be the greatest integer smaller than the points in the line segment. We may assume

that y1 = y2. Otherwise, we can apply the unimodular transformation

[

x

y′

]

=

[

1 0

y1 − y2 1

] [

x

y

]

,

without changing the width in direction x. If P′′ contains (x1, y1), it intersects x = x1

in a segment [y1 − α1, y1 + α2]. We may then similarly assume that α2 ≥ α1. P′′ will

only cut x = x1 + 2 in points with y-coordinate smaller than 2 − α2. The width in the

y direction will therefore be smaller than 2 − α2 + α1 ≤ 2, contradicting that x is a
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Figure 5.88: Lattice point free polygon with lattice width 2

lattice width direction. If P′′ does not contain (x1, y1), then it only intersects x = x1 in

points with y-coordinate y1 + α with 0 < α < 1. Given any such point, it is clear that

P′′ intersects x = x1 + 2 only in points with y-coordinate strictly between y1 − α and

y1 + 1− α, again showing that the width in the y direction is smaller than 2 and leading

to the same contradiction. The contradiction shows that there can be no gaps of width

2 in the lattice width direction of P. �

Note that the ω(2) bound is too coarse to reach the above conclusion as ω(2) > 2.

An example of a polygon with lattice with greater than 2 is the polygon with vertices

(−17/110, 83/110), (2/10,−9/10) and (177/90, 100/90), shown in Figure 5.88, which

has width 221/110.

The idea of the projection algorithm is now to first find a direction in which the

gaps are expected to be small and to unimodularly transform the existentially quan-

tified variables such that this direction lies in the direction of one of the transformed

variables. Then, the remaining existentially quantified variables are projected out by

applying the technique recursively. The resulting generating function will have gaps

at most ω(m) wide and so we have to subtract at most ω(m) shifted copies of this

generating function before we can plug in 1 to project out the selected (and now only

remaining) existentially quantified variable. We now look at each of these step in a bit

more detail.

We are given a polyhedron P such that Ps is a polytope and we want to compute a
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generating function f (x, y) for the set T in (5.85). We first compute the lattice width

directions of the m-dimensional parametric polytope Ps,t as in subsection 5.23. The

result is a partition of the parameter domain, i.e., the projection of P onto the first n+ d

coordinates, into partially open polyhedra Qi, together with the lattice width direction

ci corresponding to each Qi. Since the generating functions only encode integer points,

we can replace each open facet 〈a, x〉 + b > 0 by the closed facet 〈a, x〉 + b − 1 ≥ 0 to

obtain a collection of closed polyhedra Q̃i. Now let

Pi = P ∩ Q̃i × Q
m

and let fi(x, y) be the generating function of the set

Ti = {(s, t) | ∃u ∈ Zm : (s, t,u) ∈ Pi}.

Then clearly,

f (x, y) =
∑

i

fi(x, y).

From now on, we will consider a particular Pi with corresponding lattice width ci and

drop the i subscript.

We are now given a polyhedron P such that the lattice width direction of Ps,t is c.

We first extend c to an m×m unimodular matrix U using the technique of subsection 5.7,

U =

[

cT

U′

]

and then compute

P′ =





In 0 0

0 Id 0

0 0 U




P.

We have

T = {(s, t) | ∃u′ ∈ Zm : (s, t,u′) ∈ P′},

i.e., we may have changed the values of the existentially quantified variables, but we

have not changed the set T . Now consider the set

T ′ = {(s, t, u′1) | ∃(u′2, . . . , u
′
m) ∈ Zm−1 : (s, t,u′) ∈ P′}.

This set has only m − 1 existentially quantified variables, so we may apply this projec-

tion algorithm recursively and obtain the generating function f ′(x, y, z) for T ′. The set

T ′ may no longer correspond to the integer points in a polytope, but, by construction,

the gaps in the final coordinate are small (≤ ω(m)).

By now we have a generating function f ′(x, y, z) for the set T ′ (with small gaps in

the final coordinate) and we have to compute the generating function f (x, y) for T . By

computing

f ′′(x, y, z) = f ′(x, y, z)

⌊ω(m)⌋⊕

k=1

(

zk f ′(x, y, z)
)

, (5.89)
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where ⊕ represents the operation on generating functions that corresponds to set dif-

ference on the corresponding sets, we obtain a generating for the set T ′′ where only

the smallest value of u′
1

is retained. The total number of u′
1
s associated to any (s, t) is

therefore either zero or one and so the “multiset” defined by taking as many copies of

(s, t) as there are associated values of u′
1

is actually the set T . That is

f (x, y) = f ′′(x, y, 1).

The only remaining problem is that the “⊕” operation in (5.89) is fairly expensive.

In particular, this operation is performed by first computing the Hadamard product of

the two generating functions (which corresponds to the intersection of the sets) and then

subtracting the resulting generating function from this first generating function. The

last operation is fairly cheap, but the Hadamard product has a time complexity which

while polynomial if the dimension (in this case the maximum of ki in (5.26)) is fixed,

is exponential in this dimension. Furthermore, this dimension increases by max ki − d

on each successive application of the Hadamard product, while max ki > d as soon as

some projection is performed, which certainly happens in the recursive application of

the algorithm. Now, the total number of Hadamard products is bounded by a constant

⌊ω(m)⌋ and so the increase in dimension is also bounded by a constant, so the whole

operation is still polynomial for fixed dimension. Nevertheless, we do not want to

perform any additional Hadamard products if we do not really have to. That is, we

would like to be able to detect when we can stop performing these operations before

reaching the upper bound ⌊ω(m)⌋.

Let f ′
0
(x, y, z) = f ′(x, y, z) and let f ′

k
(x, y, z) be the result of applying the “set differ-

ence” in (5.89) k times. Denote the corresponding sets by T ′
0

and T ′
k
. We want to find

the smallest k such that f ′′(x, y, z) = f ′
k
(x, y, z). Note that we are talking about equal-

ity of rational functions here. Any further application of the set difference operation

will not change this rational function, but it will typically produce a different (more

complex) representation. To check whether the current k is sufficient, we are going to

count how many times any element of T ′
k

still appears in a shifted copy of T ′
0
, with shift

greater than or equal to k+1. If this number is zero, any further set difference will have

no effect. That is, we want to compute

∞∑

l=k+1

∣
∣
∣T ′l ∩

(

en+d+1 + T ′
)∣∣
∣ ,

or, in terms of generating functions,

h(x, y, z) =

∞∑

l=k+1

f ′k (x, y, z) ⋆ zl f ′(x, y, z).

We should point out here that while the Hadamard product (⋆) corresponds to intersec-

tion when applied to generator functions of indicator functions (i.e., with coefficients

one or zero), in general it will produce a generating function with coefficients that are

the product of the corresponding coefficients in the two operands. We can therefore
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rewrite the above equation as

h(x, y, z) =

∞∑

l=k+1

f ′k (x, y, z) ⋆ zl f ′(x, y, z)

= f ′k (x, y, z) ⋆





∞∑

l=k+1

zl f ′(x, y, z)





= f ′k (x, y, z) ⋆
zk+1 f ′(x, y, z)

1 − z
.

Computing h(x, y, 1) would give us a generating function with as coefficients how many

times a point of T ′
k

still appears in a shifted copy of T ′
0

for any particular value of s and

t. However, we want to know if this number is zero for all values of s and t, so we

compute h(1, 1, 1) instead. We have to be careful here since we allow the polyhedron P

to be unbounded and so we should apply the technique of subsection 5.24 with Q the

projection of P on the remaining coordinates.

Note that testing whether we can stop is more expensive than applying the next iter-

ation (since we have an extra (1 − z) factor in the denominator of one of the operands).

However, we may save many iterations by stopping early and we will not needlessly

replace a given representation of f ′′(x, y, z) by a more complex representation (with

more factors in the denominator). An alternative way of checking whether we can stop

is to test whether f ′
k
(x, y, z) = f ′

k+1
(x, y, z) (as rational functions). To do so, we would

need to check that both

f ′k (x, y, z) −
(

f ′k (x, y, z) ⋆ f ′k+1(x, y, z)
)

and

f ′k+1(x, y, z) −
(

f ′k (x, y, z) ⋆ f ′k+1(x, y, z)
)

are zero and this Hadamard product is more expensive than the one above.

Example 5.91 Consider once more the parametric polytope

P(p) =






x |

−2x1 + p + 5 ≥ 0

2x1 + p + 5 ≥ 0

−2x2 − p + 5 ≥ 0

2x2 − p + 5 ≥ 0






from Woods (2004, Example 2.1.7) and Example 5.79 and assume we want to compute

c(p) =
[

∃x ∈ Z2 : (p, x) ∈ P
]

.

That is, we simply want to know for which values of p the polytope is non-empty. Now,

there are more efficient ways of answering this particular question, but we will use it

here as an example of the above algorithm. The polytope P(p) is shown in Figure 5.90

for all integer value of the parameter for which the polytope is non-empty.
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Figure 5.92: The transformed parametric polytope from Example 5.91 for 0 ≤ p ≤ 5
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The first step is to compute the lattice width of P(p). In Example 5.79, we already

obtained the decomposition of the parameter domain into

Ĉ1 = { p | 0 ≤ p ≤ 5 }

Ĉ2 = { p | −5 ≤ p ≤ −1 },

with corresponding lattice widths and lattice width directions

c1 = (0, 1) wc1
(p) = 5 − p

c2 = (1, 0) wc2
(p) = 5 + p.

Note that in this example, the gaps in both coordinate directions are 1, so, in principle,

there is no need to perform any unimodular transformation here. Nevertheless, we will

apply the transformation that would be applied by the algorithm. On the first domain,

we extend the lattice width direction to the unimodular matrix
[

0 1

1 0

]

.

After application to the existentially quantified variables x, we obtain the parametric

polytope

P′1(p) =






x |

−2x2 + p + 5 ≥ 0

2x2 + p + 5 ≥ 0

−2x1 − p + 5 ≥ 0

2x1 − p + 5 ≥ 0

p ≥ 0






shown in the top part of Figure 5.92. We now temporarily remove the existential quan-

tification on x1, resulting in

T ′ = {(p, x1) ∈ Z2 | ∃x2 ∈ Z : (s, x) ∈ P′}.

Since there is only one existentially quantified variable left, we know we only have to

shift and subtract the set once to obtain a set with at most one value of x2 associated

to each value of (p, x1). In particular, let f (x, z1, z2) be the generating function of

the integer points in P′. Then g(x, z1) = f ′(x, z1, 1), with f ′(x, z1, z2) = f (x, z1, z2) −

f (x, z1, z2) ⋆ z2 f (x, z1, z2), is the generating function of T ′.

To check whether we need to subtract any shifted copies of g(x, z1) from itself, we

compute

h(x, z1) = g(x, z1) ⋆
z1 g(x, z1)

1 − z1

.

The second argument of this Hadamard product is depicted in Figure 5.92 by its coef-

ficients. The exponents in h(x, z1) that have a non-zero coefficient are therefore those

marked by both a dot (•) and a number. The total sum can be computed as h(1, 1) = 26,

which is finite, but non-zero. We therefore need to subtract at least one shifted copy of

g(x, z1). Let

g′(x, z1) = g(x, z1) − g(x, z1) ⋆ z1g(x, z1).
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Computing

h′(x, z1) = g′(x, z1) ⋆
z2

1
g(x, z1)

1 − z1

,

we would find that h′(1, 1) = 0 and so we do not need to shift and subtract any further.

However, since we are dealing with a two-dimensional problem, we already know from

Theorem 5.87 that we can stop after one shift and subtract, so we do not even need

to compute h′(x, z1) here. The function g′(x, z1) now only has non-zero coefficients for

at most one exponent of z1 for each exponent of x. We may therefore project down to

obtain the function g′(x, 1), which is the generating function of the set in the lower left

part of Figure 5.92.

For the chamber Ĉ2 of the parameter domain, the computations are nearly identical

and the final result is simply the sum of the two generating functions found for each of

the two (disjoint) chambers.
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6 Publications

6.1 Publications about the Library

This is a list of some reports and publications explaining details of parts of the barvinok

library.

• Analytical computation of Ehrhart polynomials and its applications for embed-

ded systems (Verdoolaege, Beyls, Bruynooghe, Seghir, and Loechner; 2004b)

• Analytical computation of Ehrhart polynomials and its applications for embed-

ded systems (Verdoolaege, Beyls, Bruynooghe, Seghir, and Loechner; 2004c)

• Analytical Computation of Ehrhart Polynomials and its Application in Compile–

Time Generated Cache Hints (Seghir, Verdoolaege, Beyls, and Loechner; 2004)

• Analytical computation of Ehrhart polynomials: Enabling more compiler analy-

ses and optimizations (Verdoolaege, Seghir, Beyls, Loechner, and Bruynooghe;

2004d)

• Experiences with enumeration of integer projections of parametric polytopes

(Verdoolaege, Beyls, Bruynooghe, and Catthoor; 2004a)

• Experiences with enumeration of integer projections of parametric polytopes

(Verdoolaege, Beyls, Bruynooghe, and Catthoor; 2005a)

• Computation and Manipulation of Enumerators of Integer Projections of Para-

metric Polytopes (Verdoolaege, Woods, Bruynooghe, and Cools; 2005b)

• Incremental Loop Transformations and Enumeration of Parametric Sets (Ver-

doolaege; 2005)

• Symbolic Polynomial Maximization over Convex Sets and its Application to

Memory Requirement Estimation (Clauss, Fernández, Garbervetsky, and Ver-

doolaege; 2006)

• Counting with rational generating functions (Verdoolaege and Woods; 2008)

• Counting integer points in parametric polytopes using Barvinok’s rational func-

tions (Verdoolaege, Seghir, Beyls, Loechner, and Bruynooghe; 2007b)

• Polynomial Approximations in the Polytope Model: Bringing the Power of Quasi-Poly-

nomials to the Masses (Meister and Verdoolaege; 2008)

• Bounds on Quasi-Polynomials for Static Program Analysis (Devos, Verdoolaege,

Van Campenhout, and Stroobandt; 2007)

• Computing parametric rational generating functions with a primal Barvinok al-

gorithm (Köppe and Verdoolaege; 2008)

• An Implementation of the Barvinok–Woods Integer Projection Algorithm (Köppe,

Verdoolaege, and Woods; 2008)
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• Algorithms for Weighted Counting over Parametric Polytopes: A Survey and a

Practical Comparison (Verdoolaege and Bruynooghe; 2008)

6.2 Publications Refering to the Library

This is a list of some reports and publications refering to the barvinok library.

• Formulas of Brion, Lawrence, and Varchenko on rational generating functions

for cones (Beck, Haase, and Sottile; 2009)

• Generating Cache Hints for Improved Program Efficiency (Beyls and D’Hollander;

2005)

• An alternative algorithm for counting lattice points in a convex polytope (Lasserre

and Zeron; 2005)

• Volume Calculation and Estimation of Parameterized Integer Polytopes (Rabl;

2006)

• Improved Derivation of Process Networks (Verdoolaege, Nikolov, and Stefanov;

2006)

• Computing the Ehrhart quasi-polynomial of a rational simplex (Barvinok; 2006)

• Memory Optimization by Counting Points in Integer Transformations of Para-

metric Polytopes (Seghir and Loechner; 2006)

• GRAPHITE: Polyhedral Analyses and Optimizations for GCC (Pop, Silber, Co-

hen, Bastoul, Girbal, and Vasilache; 2006)

• Volume Computation for Polytopes and Partition Functions for Classical Root

Systems. (Baldoni-Silva, Beck, Cochet, and Vergne; 2006)

• A primal Barvinok algorithm based on irrational decompositions (Köppe; 2007)

• pn: A Tool for Improved Derivation of Process Networks (Verdoolaege, Nikolov,

and Stefanov; 2007a)

• Theoretical and Computational Methods for Lattice Point Enumeration in Insid-

e-Out Polytopes (van Herick; 2007)

• On Ehrhart Polynomials and Probability Calculations in Voting Theory (Lepel-

ley, Louichi, and Smaoui; 2008)

• Local Euler-Maclaurin formula for polytopes (Berline and Vergne; 2006)

• Exact algorithms and software in optimization and polyhedral computation (Fukuda;

2008)

• Enumeration of 4 × 4 magic squares (Beck and van Herick; 2010)
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• Symbolic and Analytic Techniques for Resource Analysis of Java Bytecode (As-

pinall, Atkey, MacKenzie, and Sannella; 2010)

• Parametric Integer Programming Algorithm for Bilevel Mixed Integer Programs

(Koeppe, Queyranne, and Ryan; 2010)

• Symmetric games with piecewise linear utilities (Ryan, Jiang, and Leyton-Brown;

2010)

• Counting chemical compositions using Ehrhart quasi-polynomials (Hubler and

Craciun; 2012)

• Precise Quantitative Information Flow Analysis – A Symbolic Approach (Kle-

banov; 2014)
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Université Louis Pasteur de Strasbourg, France. [32, 56]

Meister, B. and S. Verdoolaege (2008, April). Polynomial approximations in the

polytope model: Bringing the power of quasi-polynomials to the masses. In

J. Sankaran and T. Vander Aa (Eds.), Digest of the 6th Workshop on Optimization

for DSP and Embedded Systems, ODES-6. [116]

Pfeifle, J. and J. Rambau (2003). Computing triangulations using oriented matroids.

In M. Joswig and N. Takayama (Eds.), Algebra, Geometry, and Software Sys-

tems, pp. 49–75. Springer. [86]

Pop, S., G.-A. Silber, A. Cohen, C. Bastoul, S. Girbal, and N. Vasilache (2006).

GRAPHITE: Polyhedral analyses and optimizations for GCC. Technical Report

A/378/CRI, Centre de Recherche en Informatique, École des Mines de Paris,
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barvinok enumerate with options, 33
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Lasserre, J. B., 117, 123

last, 17, 18

LattE, 36, 59, 62

LattE macchiato, 59, 62

latte2polylib.pl, 36
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