To verify the installation it is sufficient to start Python and then import the module by the command
>>> import ginv
The following example allows to transform a polynomial system into a triangular form and output it on a display.
import ginv st = ginv.SystemType("Polynomial") im = ginv.MonomInterface("Lex", st, ['x', 'y', 'z']) ic = ginv.CoeffInterface("GmpZ", st) ip = ginv.PolyInterface("PolyList", st, im, ic) iw = ginv.WrapInterface("CritPartially", ip) iD = ginv.DivisionInterface("Janet", iw) basis = ginv.basisBuild("TQ", iD, \ ['x^3 - y^2 + z - 1',\ 'y^3 - z^2 + x - 1',\ 'z^3 - x^2 + y - 1']) for p in basis.iterIB(): print p
1395367452523974847088496*x + (-36974012043720606602747)*z^26 + (-18042387149981405949931)*z^25 + 33030642427988789483293*z^24 + 290848876458135913225112*z^23 + 129076392042710083597936*z^22 + (-219952910543490007651408)*z^21 + (-735043497452966299206159)*z^20 + (-310272794617140912662271)*z^19 + 160633475001590756076807*z^18 + 982342916167428059233558*z^17 + (-20920432695844226462772)*z^16 + 1237879512449968788217761*z^15 + (-649364739492104109294111)*z^14 + 1770783798251395989600640*z^13 + (-3269570785655865115267646)*z^12 + 1017137392573548569160425*z^11 + (-5380290668716432422480115)*z^10 + 2511318414925313271358736*z^9 + (-5820765926743222198514292)*z^8 + 3916234105006809425362144*z^7 + (-1271740986960481649374276)*z^6 + 4526571866128344763445768*z^5 + 4225399407124480064647579*z^4 + (-1702488139911346623054830)*z^3 + 2599321588208462787828165*z^2 + (-6499050198343010356877518)*z + 1138531641035453825071656 1395367452523974847088496*y + (-24263245905633422666089)*z^26 + (-2564101797577402706105)*z^25 + (-7612716934398042952513)*z^24 + 183708473843508669676888*z^23 + 27382590493064706561728*z^22 + 93382883659052502917872*z^21 + (-445019735963407736728965)*z^20 + (-124580325693827052967653)*z^19 + (-496913514381305731286115)*z^18 + 686028568407960758274770*z^17 + (-293264534395468068345180)*z^16 + 1754916317739869655913083*z^15 + (-1494161044420719326758149)*z^14 + 3166864848665922491507168*z^13 + (-4324148866718107366719898)*z^12 + 5118193353820594354340467*z^11 + (-9669988041948198759925505)*z^10 + 8234964392530939187961184*z^9 + (-14800290986146424015670204)*z^8 + 14407709710372641542274656*z^7 + (-17110238558169309305535500)*z^6 + 19289855195567445653291224*z^5 + (-14071675248685297091156215)*z^4 + 17208495316564910541540422*z^3 + (-9780261032315595871168233)*z^2 + 5684543607089979672443254*z + (-4606430757804595389204888) z^27 + (-9)*z^24 + 29*z^21 + 6*z^19 + (-53)*z^18 + 22*z^17 + (-63)*z^16 + 96*z^15 + (-149)*z^14 + 242*z^13 + (-261)*z^12 + 484*z^11 + (-545)*z^10 + 740*z^9 + (-908)*z^8 + 972*z^7 + (-1220)*z^6 + 1047*z^5 + (-1045)*z^4 + 943*z^3 + (-535)*z^2 + 422*z + (-216)