
 T O C T O C

 T O C T O C

ISC-TN-2008-1 B. Reid
 ISC
 February 29, 2008

BIND 9 performance while
serving large zones under update

Copyright Notice

Copyright © 2008 Internet Systems Consortium, Inc. All Rights Reserved.

Abstract

(A PDF version of this document is available at ftp://ftp.isc.org/isc/dns_perf/ISC-TN-2008-
1.pdf)

ISC has built a testbed out of Commercial Off-The-Shelf (COTS) servers that can perform full-
scale tests of the performance of DNS protocols using real data from TLD and root servers, or
synthetic data to test the performance of different mixes. We have been particularly interested
in the performance of DNSSEC mechanisms within the DNS protocols and on the use of BIND as
a production server for major zones.

High-end name service is typically provided by a battery of 13 servers, any one of which could
be selected by the client that received the reply identifying them. Our testbed houses 13 servers
and a framework that simulates an adequately-fast internet connection to them, so that our
tests mirror as closely as possible the operating environment used by TLD and root name service
operators. Test clients issue requests to the servers in the testbed, and outboard measurement
systems track the requests and the responses.

We have measured raw query processing speed, DDNS update speed, and the speed of query
processing while simultaneously updating via DDNS protocols. We used the COM zone from 5
October 2007 for these tests, and we used a 48-hour trace of the Palo Alto F-Root node as a
source of query data.

This work was sponsored in part by the National Science Foundation via grant NSF OARC DNS
SCI CISE SCI-0427144.

Table of Contents

1. Introduction
2. Identifying appropriate server hardware
3. Operating system evaluations
4. Testbed physical construction
5. Test data stream
6. DNS Protocol performance measurements
7. Conclusions

Appendix A. Software availability

1. Introduction

ISC has built a testbed that can perform full-scale tests of the performance of DNS protocols
using real data from TLD and root servers, or synthetic data to test the performance of different
mixes. We have been particularly interested in the performance of DNSSEC mechanisms within
the DNS protocols and on the use of BIND as a production server for major zones.

Ordinary DNS traffic uses UDP datagrams. The protocol standard specifies that the replies be
restricted to 512 bytes of payload (RFC1035, #4.2.1). In such a packet, the responding name
server can fit 13 answers to a question. If the question asked is 'what are the name servers for
domain example.com?', the answer will identify no more than 13 name servers. For this reason,

http://new.isc.org/proj/dnsperf/ISC-TN-2008-1.html#toc
http://new.isc.org/proj/dnsperf/ISC-TN-2008-1.html#toc
ftp://ftp.isc.org/isc/dns_perf/ISC-TN-2008-1.pdf
http://www.dnssec.net/
http://isc.org/
http://new.isc.org/proj/dnsperf/ISC-TN-2008-1.html#anchor3
http://new.isc.org/proj/dnsperf/ISC-TN-2008-1.html#anchor4
http://new.isc.org/proj/dnsperf/ISC-TN-2008-1.html#anchor5
http://new.isc.org/proj/dnsperf/ISC-TN-2008-1.html#anchor2
http://new.isc.org/proj/dnsperf/ISC-TN-2008-1.html#anchor7
http://new.isc.org/proj/dnsperf/ISC-TN-2008-1.html#anchor1
http://new.isc.org/proj/dnsperf/ISC-TN-2008-1.html#anchor6
http://new.isc.org/proj/dnsperf/ISC-TN-2008-1.html#anchorA
http://isc.org/
http://www.dnssec.net/
http://www.ietf.org/rfc/rfc1035.txt

 T O C T O C

high-end name service is typically provided by a battery of 13 servers, any one of which could
be selected by the client that received the reply identifying them.

Our testbed houses 13 servers and a framework that simulates an adequately-fast internet
connection to them, so that our tests mirror as closely as possible the operating environment
used by TLD and root name service operators. Test clients issue requests to the servers in the
testbed, and outboard measurement systems track the requests and the responses.

There probably exist enough supercomputers in the world for us to have built a cluster of 13
supercomputers that would have adequate performance under almost any conditions. But an
important purpose of our testbed is to test with affordable commercial off-the-shelf server
hardware. There is more value in testing the performance of servers that can be used around
the world in DNS operations than in testing the performance of experimental servers that never
leave a laboratory. So every component of our testbed has been moderately-priced COTS
equipment that realistically can be used by full-scale name service operators.

Although we have tested with both signed and unsigned zones, we did not measure the
performance of zone signing or re-signing as part of this project.

This work was sponsored in part by the National Science Foundation via grant NSF OARC DNS
SCI CISE SCI-0427144.

1.1. Project outline

The DNS Performance Testing Project was conceptually divided into these phases:

1. Design and document testbed. Identify the proper server hardware through benchmarks and
order necessary hardware. Testbed will allow simulation of a universe of 13 TLD servers,
using computers of appropriate speed interconnected by a non-blocking switch. Testbed will
include enough client computers to present a full simulated load, and will have a control
machine and a separate logging machine.

2. Acquire a test request stream by recording 72 hours of F root traffic. Subsets of this test
stream will be used for performance measurements.

3. Build testbed. Install and configure the servers and interconnects. Try various operating
systems under various configuration settings, including at a minimum FreeBSD, Linux,
NetBSD, and Solaris. Get the testbed working with BIND under each such OS using a copy of
the live .com database, and measure performance under each.

4. Filter the test request stream to produce a TLD test stream for COM by removing all queries
that are not asking about .com domains. Modify the "nsupdate" program so that it can
generate and send a synthetic test update stream that is 1/3 NS record changes, 1/3
domain-add requests, and 1/3 domain-delete requests, and so that it has a speed-control
option that can be used to adjust the rate at which it sends such requests.

5. Set up the testbed so that each of the 13 servers is running as an authoritative server for a
recent copy of the COM zone, and that each is processing the filtered test request stream
produced in Task 4. Set up the 13 servers so that each uses Notify and IXFR to keep its
COM zone up to date. Set up a 14th server as a "Stealth master" (see RFC1996 #2.1) as an
authoritative server for the COM zone, and then make a series of tests that use nsupdate to
update this 14th server with the synthetic update stream. There will be 3 tests in this series,
corresponding to "low", "medium", and "high" rates of update. A low rate is 1% of COM
changing every day; a medium rate is 3% of COM changing every day, and a "high" rate
will be the maximum speed at which we are able to make it run.

6. Make the testbed hardware available to approved organizations for research measurement
projects. Any significant software developed will be provided as open source.

1.2. Staffing

David Boggs, PhD: principal investigator
Brian Reid, PhD: associate investigator and research programmer
Paul Vixie: associate investigator
Peter Losher: system administrator

2. Identifying appropriate server hardware

Our experience as authors and maintainers of BIND is that the performance of BIND is limited
primarily by the processor and memory performance of the server computer, and by bottlenecks

http://new.isc.org/proj/dnsperf/ISC-TN-2008-1.html#toc
http://en.wikipedia.org/wiki/Commercial_off-the-shelf
http://www.isc.org/index.pl?/ops/f-root/

in the operating system. Vendors normally advertise processor speeds, but the performance of a
computer's memory subsystem is not readily available. We have identified several candidate
server computer configurations based on price and availability and have measured the memory
performance (bandwidth, latency, and cache performance) of each.

2.1. Candidate computers

We selected computers from various vendors that were priced such that we might be able to buy
16 of them for about $100K. We also included computers that we know were unacceptably slow,
so that we could have a wider spectrum of results from the measurement suites. This included:

Computers tested

ID Vendor Model Code Processor(s) Memory Bus Comments

Sun 1 Sun Sun Fire X4200 4x AMD254/2.8GHz DDR-400 PC3200

Sun 2 Sun Sun Fire X4200 4x AMD285/2.6GHz DDR-400 PC3200

Iron
1

Iron
Systems I-class I1525HS 2x Xeon/2.4GHz DDR-400 PC3200

Intel
E7505
chipset

Iron
2

Iron
Systems

M-class MS3520HS 4x AMD280/2.4GHz DDR-400 PC3200 Tyan
S3870

Cel 1 Celestica A8440 2x AMD846/2.0GHz DDR-333 PC2700 desktop

DEC Compaq 1x Celeron/1.25GHz SD-133 PC133 desktop

HP 1 Hewlett
Packard

Proliant DL 140g3 4x Xeon/3.0GHz DDR2-
667

PC5400 1U system

We measured a number of other less-powerful systems, primarily to help us be confident in our
measurement methodology. None of them was a realistic candidate to be our server choice.

2.2. Measurement methodology

We began with the memtest86 measurement suite (v3.2), by means of a bootable CD that did
not involve the subject computer's installed OS. This program claims to measure transfer rates
in megabytes/sec to and from memory and caches. We followed with the calibrator (v0.9e),
which measures cache and memory latency and TLB performance, and with lmbench (v3.0a4).
Combined results are shown below, separated by CPU maker (Intel or AMD). We were suspicious
of the memory bandwidth number for the HP 1 unit, presumably because the memtest86
program is not interfacing properly with its hardware. We investigated further using the
STREAM system (v1.0), which shows bandwidth numbers similar to those from memtest86 for
all units except HP 1.

AMD processors Intel processors

 Sun 1 Sun 2 Iron 2 Cel 1 HP 1 Iron 1 DEC

Bandwidth in MBytes/sec
 L1 memtest86 22886 21251 19717 16331 49058 19607 12375

 L2 memtest86 5686 5280 4899 4230 -- 14675 5610

 Memory mt86 2237 2202 2237 972 19559 1460 342

 lmbench 2316 2368 1303 2984 2047 652

Latency in nanoseconds (miss/replace)
 L1 calibrator 3.48/3.47 3.73/3.73 4.08/4.07 5.07/5.05 3.07/3.80 6.82/6.94 4/4

 L2 calibrator 99/99 98/98 116/116 165/165 64/104 114/116 102/102

 lmbench 83 83 155 72 109 109

STREAM benchmarks in MBytes/sec
 Copy 1724 1816 1122 2586 1309 285

 Scale 1785 1885 1175 2751 1194 310

 Add 1896 1994 1254 2884 1329 394

 Triad 1893 1958 1138 2890 1524 397

http://www.sun.com/servers/entry/x4200/
http://www.sun.com/servers/entry/x4200/
http://www.ironsystems.com/Customkititems.asp?kc=SYS-S-I1525HS&Cc=I-Class
http://www.ironsystems.com/Customkititems.asp?kc=SYS-S-MS3520HS&Cc=M-Class
http://www.celestica.com/products/A8440.asp
http://h18000.www1.hp.com/products/servers/proliantdl140/
http://homepages.cwi.nl/~manegold/Calibrator/
http://www.cs.virginia.edu/stream/
http://sourceforge.net/projects/lmbench
http://www.memtest86.com/

 T O C T O C

On the basis of these benchmarks, and of vendor prices, we selected the HP 1 system (DL
140g3) to use for our testbed. We began this benchmark assuming that AMD systems would be
faster in our price range, but the data shows otherwise.

3. Operating system evaluations

Having benchmarked the hardware for maximum performance in the kind of load to be offered,
we now benchmark various operating systems for their suitability to run BIND 9. The same
query stream is sent to the same version of the application software running on several different
operating systems, and the processing speed is noted.

3.1. Description

The testbed configuration is as follows:

Using several machines in our testbed (one for each OS), we are running an instance of these
operating systems:

FreeBSD 6.2-RELEASE
FreeBSD 7.0-CURRENT
Linux Gentoo 2.6.21
Linux Fedora Core 2.6.18
NetBSD 4.0
OpenBSD 4.1
Windows 2003 Server
Windows XP Professional

On each of the server test computers, we installed BIND 9.4.1-P1 and configured it to be
authoritative for PT, COM.BR, and NL. We configured BIND to act as an authoritative server,

http://new.isc.org/proj/dnsperf/ISC-TN-2008-1.html#toc
http://h18000.www1.hp.com/products/servers/proliantdl140/

with the following configuration:

options {
 listen-on { 204.152.187.83; };
 check-sibling no;
 recursion no;
 fetch-glue no;
 allow-recursion { none; };
 acache-enable yes;
 max-acache-size 128M;
};

3.2. Test methodology

We began with some preliminary tests to determine whether or not the size of the zone file
being served had an effect on server performance. We were not able to measure any difference
in server response rates over a 50:1 ratio of zone file size. We believe that if we had used a
zone file that was larger than the amount of physical memory on the server, there would have
been significant performance degradation. After concluding that zone file size did not matter, we
used the .PT zone for further testing because it was not tedious to copy it from machine to
machine during server reconfiguration.

We used a 1-hour test data stream that was captured from queries to ns-ext.isc.org. We
extracted those queries that enquired of the .PT zone. There were 1.13 million such queries in
the test stream. We sent this query stream in turn to each of the test servers using the
queryperf program. We measured the length of time that it took each server to answer all of
the queries in this query stream, and from that determined the average query response rate at
which the server breaks down and is no longer able to process further requests, for each
operating system.

3.3. Results

This table shows the approximate average number of queries per second processed by BIND
9.4.1-P1 running on the listed operating system using the testbed hardware in the configuration
shown at the beginning of this page. The query rate shown is the 'breaking point' capacity such
that the server would be forced to drop queries if it received them any faster (on average).

Server capacity at breaking point

OS Queries/second

Linux Gentoo 2.6.20.7 93,000

Linux Fedora Core 2.6.20.7 87,000

FreeBSD-7-CURRENT 200708 84,000

FreeBSD-6-stable 200708 55,000

FreeBSD 6.2-RELEASE 51,000

Solaris-10 DevelExpr 5/07 50,000

NetBSD-4.0-Beta 200708 42,000

OpenBSD 4.1-snap-20070427 35,000

Windows 2003 Server 22,000

Windows XP Pro64 5.2.3790 SP2 20,000

To determine whether or not there were performance differences in serving signed zones, we
performed these tests using both signed and unsigned zone files. We did not test signed zones
under all operating systems; we did this test using FreeBSD 6.2, making the assumption that
relative speed differences would be the same across operating systems. Our test version of the
unsigned zone file for .PT is 4.8 MB; the signed version of that file is 33.9 MB. In our test
stream of 1.13 million queries we found no difference in the speed at which BIND 9.4.1-P1
responds to queries served from a signed version or unsigned version of the zone. There were
differences in query size and total network traffic:

Network byte count per test (entire 1.13 million
queries)

http://www.freshports.org/dns/queryperf/

 T O C T O C

 requests replies
unsigned zone 71.3 MB 141.2 MB

signed zone 83.7 MB 391.3 MB

Average packet size in bytes
 requests replies

unsigned zone 63 bytes 125 bytes
signed zone 74 bytes 346 bytes

4. Testbed physical construction

The logical design for ISC's DNS performance testbed is described in ISC technote TN-2006-2.
The equipment fits in a single 7-foot 19-inch four-post rack, and requires 3 15-amp 120VAC
power circuits. Because the engineers performing tests can be located anywhere in the world, we
are using IPMI to administer and control the computers. This requires having a separate
Ethernet to carry the IPMI signalling, requiring each server to have two Ethernet connections.
Although IPMI was devised and popularized by Intel, several open-source IPMI clients are
available.

4.1. Description

We mounted the power controllers at the bottom of the rack and the Ethernet switches at the
top of the rack. Because IPMI is a 10MBPS protocol, we used a (less expensive) 10/100 switch
for the IPMI network, and a nonblocking Gigabit switch for the data transport network. The
servers are mounted on slide rails, and use every second slot in the rack for better cooling.

4.2. Photographs

Click on a photograph to pop up a larger view. These photographs were taken 4 April 2007.

DNS performance testbed rack seen
from left rear corner. The cardboard
boxes at the top hold racking
supplies.

Testbed from the back. Lavender wires (left)
are to the Gigabit data network; turquoise
wires (right) are to the IPMI network. Power
lines run inside a channel built in to the right
edge of the rack.

http://new.isc.org/proj/dnsperf/ISC-TN-2008-1.html#toc
http://new.isc.org/proj/dnsperf/isc-tn-2006-2.html
http://en.wikipedia.org/wiki/Intelligent_Platform_Management_Interface
http://new.isc.org/proj/dnsperf/images/TN-2008-1/ZJ7X3161.jpg
http://new.isc.org/proj/dnsperf/images/TN-2008-1/ZJ7X3162.jpg
http://new.isc.org/proj/dnsperf/images/TN-2008-1/ZJ7X3163.jpg

 T O C T O C

Testbed seen from the front. Two of
the servers are removed for OS
testing. A power controller is visible
at the bottom edge of this picture.

Close-up of the front panel of the servers,
showing vendor model number (HP ProLiant
DL140 G3). Note the air vent above the CD-
ROM drive. Such vents are not common in 1U
servers, but because of high CPU speeds,
these servers need more air flow over the
CPU heat sinks than a typical 1U.

5. Test data stream

The purpose of this project is to test the performance of DNS servers under various conditions.
This requires a baseline test stream, to which we will make various adjustments. A 48-hour
baseline test stream was captured from the F-root server in Palo Alto on 15-17 November 2006.

5.1. Characteristics of baseline stream

We used tcpdump to capture all packets transmitted by the Palo Alto F-root server. UDP name
service replies include the question to which they are the reply. The baseline tests will be run by
reproducing the questions in this stream, one question per query packet. Other tests will require
augmenting these queries with others (to increase the load) and replacing some of these queries
with a different mix (to change the load without increasing it).

Below is the output from this characterization program run over the 15-17 November
baseline stream.

Start: Wed, 15 Nov 2006 06:00:00 +0000, duration: 172800.00 seconds.
414931073 requests (38.8% failed)

Avg rate (requests/second) = 2401.2, 95%ile burst = 3011.0, Max burst = 3921.9
414342756 recursive queries (38.7% failed); 171887553 authoritative replies

23587274 TCP packets in 7906809 sessions (0 never closed) not analyzed (5.7% of total packets)

By type of query in default class:
 251892742/ 60.7% A 107157854 failed (42.5%)
 41508116/ 10.0% PTR 6860091 failed (16.5%)
 34088345/ 8.2% AAAA 7343865 failed (21.5%)
 23454402/ 5.7% SOA 21453572 failed (91.5%)
 23030654/ 5.6% MX 6186641 failed (26.9%)
 20844336/ 5.0% A6 166356 failed (0.8%)
 7440925/ 1.8% SRV 7211917 failed (96.9%)
 4729932/ 1.1% TXT 1613960 failed (34.1%)
 3715926/ 0.9% NS 537492 failed (14.5%)
 1902492/ 0.5% ANY 860207 failed (45.2%)
 1111659/ 0.3% 1111659 failed (100.0%)
 1020917/ 0.2% CNAME 193925 failed (19.0%)
 50697/ 0.0% NAPTR 39748 failed (78.4%)
 31239/ 0.0% TXT CHAOS 50 failed (0.2%)
 22763/ 0.0% MAILB 22763 failed (100.0%)
 19929/ 0.0% A HS 19929 failed (100.0%)
 6004/ 0.0% X25 5917 failed (98.6%)
 4225/ 0.0% Type0 485 failed (11.5%)

http://new.isc.org/proj/dnsperf/ISC-TN-2008-1.html#toc
http://new.isc.org/proj/dnsperf/images/TN-2008-1/ZJ7X3163.jpg
http://new.isc.org/proj/dnsperf/images/TN-2008-1/ZJ7X3169.jpg
http://new.isc.org/proj/dnsperf/tcpdump-v4.txt

 (click here for the full chart, including the long tail)

Class ANY:
 34296/ 0.0% 4451 failed (13.0%)

Return codes (percentages are of total query count):
 159636174 38.5% NXDomain
 529285 0.1% FormErr
 504175 0.1% update
 79421 0.0% echo
 24769 0.0% Refused
 22763 0.0% NotImp
 2825 0.0% notify
 1788 0.0% stat
 178 0.0% ServFail
 43 0.0% server,
 32 0.0% zoneInit
 21 0.0% updataA
 8 0.0% updateDA
 8 0.0% zoneRef
 7 0.0% inv_q
 7 0.0% op6
 6 0.0% op3
 5 0.0% updateM
 1 0.0% op7
 1 0.0% updateD
 1 0.0% updateMA

5.2. Plot of baseline stream against time

http://new.isc.org/proj/dnsperf/datastream-details.html

 T O C T O C
6. DNS Protocol performance measurements

In earlier phases of this project we measured raw performance of proposed hardware platforms,
and application performance of hardware/OS combinations. We used these measurements to
select a test server system and we built a testbed using the selected systems as building blocks.

The ultimate purpose of all of this work is to measure the performance of the DNS protocols with
the BIND software running on inexpensive commodity hardware. We spent time optimizing the
speed of the server platform in order to ensure that we were getting the best possible results in
our DNS protocol measurements.

In this section we describe the DNS protocol tests that we performed using our testbed and the
results that we measured.

6.1. Test data

The test stream used is detailed in Section 5 of this report ("Test data stream"). The
authoritative name servers were loaded with the COM zone as distributed by Verisign for 5
October 2007. Licensing restrictions prevent us from making that zone file public, but we can
provide any suitably licensed research group with a copy of that file if Verisign no longer has a
copy.

We wrote a program named "updgen", an update generator, which reads a zone file and
produces from it an input file for the "nsupdate" program. Such input files must be created in
the context of the zone file to which they are an update, in order to know the names of zones
to be deleted and to make sure that added zones are not already there. During the testing
various update streams were generated from various subsets of the COM zone. A tar file of the
updgen program that generated them is at ftp://ftp.isc.org/isc/dns_perf/updgen.tar

6.2. Test conditions

6.2.1. Test systems used

The physical configuration of our testbed is described in ISC Technote ISC-TN-2006-2. There
are additional test conditions that we have imposed in order to make the tests as realistic as
possible. The logical and network configuration is described at the beginning of the "Operating
system evaluations" section.

A production name server would never be run with a physical RAM size that would cause it to
swap. It would be purchased with enough memory for the entire application to be resident.
Budgetary constraints limited our servers to 16GB of RAM. For some tests that required us to
divide the test zone into slices, each of which can fit into physical memory. The slicing technique
is widely used by search engines for the same reason; swapping introduces unacceptable
performance delays.

All computers in the testbed were loaded with identical copies of FreeBSD 7.0-RELEASE, and
name server computers were running BIND 9.4.2. Test data was transmitted using the version of
queryperf that was bundled in the BIND 9.4.2 release (see below under "Sending test data").

6.2.2. Test data used

For queries-per-second measurements and DDNS update measurements we found that the COM
zone could be divided into 2 pieces that did not cause swapping. For full-scale queries-while-
updating measurements we found that the COM zone needed to be divided into 3 pieces.

The COM zone file that we used for these tests is 5.8 GBytes, unsigned. A signed version of that
file is 15GBytes. Each unsigned half of the zone file is 2.9GBytes but causes BIND 9.4.2 to
occupy 12.2GBytes of memory before answering any queries.

Query test streams were partitioned to match the slices of the zone file, using a simple awk
command analogous to this one, which builds the subset of the queryperf file that corresponds
to the 2nd slice of a 3-slice partition:

 cat com.queryperf | awk '
 {
 NAME=$1
 QTYPE=$2
 N=split(NAME,BurstNAME,"\.")

http://new.isc.org/proj/dnsperf/ISC-TN-2008-1.html#toc
ftp://ftp.isc.org/isc/dns_perf/updgen.tar
http://new.isc.org/proj/dnsperf/isc-tn-2006-2.html
http://new.isc.org/proj/dnsperf/OStest.html

 Part2=tolower(BurstNAME[N-1])
 if ((Part2 <= "f") || (Part2 > "n")) {
 next;
 } else {
 print;
 }
 }
 ' > com.3part.g-n.queryperf

6.2.3. Sending test data

Server performance tests were executed by using the queryperf program (part of the BIND 9
distribution) on a machine dedicated to sending test data. We determined that a single queryperf
process on this hardware base can send 46,000 queries per second under FreeBSD 7.0-
RELEASE, and that if there are two queryperf processes running (either on one sender computer
or two) that they can, combined, send 60,000 queries per second. Further addition of additional
queryperf processes did not increase the test rate beyond 60,000 queries per second emitted
from that server. In other words, a single load generator in our testbed cannot test at a rate
faster than 60K queries per second in our configuration. We have two load generator computers
and can if necessary use the "DNS Tender" as an additional source of load.

Note that in our testbed the load-sending computers have 4 CPU cores. When one queryperf
process is sending at its maximum speed of 46,000 queries per second, the "top" system
command indicates 5% idle time and a weighted CPU usage (WCPU) of 86%. With two queryperf
processes running, idle time on the 4-processor system drops to 0.2% idle and the weighted
CPU usage is 91%. Adding additional queryperf processes beyond these do not change the
numbers from the 2-process measurements. This causes us to believe that this is an OS limit,
but we did not investigate the reason for that limit.

6.2.4. Note

Performance of zone signing and re-signing is not part of this study. Current trends (2008) are
towards hardware accelerator cards and incremental re-signing. We measured neither, except
incidentally, during which we noted that our hardware platform was able to sign the entire COM
zone (the edition that we are using) in a bit more than 2 hours, and that the signed zone files
are about 2.6 times bigger than the unsigned files.

6.3. Test results

6.3.1. Simple queries of the COM zone

To fit into the physical memory available on our test servers, the COM zone was divided into two
slices, each containing half of the zone. We ran the tests using BIND 9.4.1-P1 on several
different OS configurations, all using the same hardware with the same BIOS settings. Numbers
are the number of queries per second that each server computer was able to process at
maximum load, averaged over 5 runs with the same data.

Average queries per second answered by 1 server at maximum load,
unsigned zones

COM 1st half COM 2nd half

Linux-Fedora 80872 76531

FreeBSD-7-RC1 75362 74993

Linux-Gentoo 68881 71565

Solaris-10 edition of
8/07

64994 62915

Solaris-10 edition of
5/07

62248 59807

FreeBSD-6.2-Stable 56461 55271

FreeBSD-6.2-Release 53555 52700

NetBSD-4-current 31670 32589

Since these measurements are per-server reply rates, the overal testbed is capable of

responding to 1 million queries per second using our hardware and software configuration. At
that rate it will consume about 4 Gbits/second of outbound network bandwidth, which means
that the network speed would be the limiting factor of pure query speed for a production system
built using this design.

6.3.2. Updates of the master server

The next measurement was to feed 10,000 DDNS update requests to the master server as fast
as it would process them, measuring how long that took. We ran these tests using BIND 9.4.1-
P1 on several different OS configurations, all using the same hardware with the same BIOS
settings.

Rate at which BIND 9.4.1-P1 can handle DDNS updates to unsigned
zone files, updates/second

 COM 1st half COM 2nd half

FreeBSD-7-RC2 93.46 82.85

FreeBSD-6.2-Stable 89.52 77.34

FreeBSD-6.2-Release 471.70 446.23

NetBSD-4-Current 80.32 81.77

Solaris-10 edition of
5/07

87.80 83.54

Solaris-10 eidtion of
8/07

63.21 64.10

Linux-Gentoo 42.07 42.76

Linux-Fedora 22.29 15.07

The anomalous behavior of FreeBSD-6.2-Release is, we believe, an error in the FreeBSD
autoconfiguration mechanism that caused BIND to be compiled without the file-system commits
(fsync) that are required by RFC2136. DNS updates are required to be committed to nonvolatile
storage before the response is returned (RFC2136 section 3.5). The underlying hardware is not
capable of that many committed file system writes per second, so the FreeBSD-6.2-Release
tests could not have been committed to nonvolatile storage. We have no explanation for the
anomalously slow performance under Linux-Fedora.

6.3.3. Queries of authoritative servers while they are being updated

The final test was to combine the previous two, and measure the rate at which an authoritative
server can respond to queries while simultaneously being updated via IXFR from a master host
which is itself under continuous update at a controlled rate. As notedabove under "Test
conditions", these tests were made with the COM zone divided into thirds.

We found that the test version of BIND that we were using (9.4.2) periodically paused to write
safety copies of the updated zone information to stable storage. In our configuration that is not
necessary because the production servers do not have the master copy of the zone information.
We made a minor modification to BIND 9.4.2 so that it did not perform such writes, and with
that modification in place, it ran nearly as fast when serving queries from a zone under constant
update as it did when serving queries from a static zone. The modifications are available as a
patch from ISC (contact info@isc.org) and will probably be included in a future version of BIND.

Query answer rate maxima while simultaneously processing
DDNS updates

DNSSEC
disabled

DNSSEC
enabled

No updating 69,400 61,200

Under update at 4
updates/sec

67,600 60,100

Under update at 8
updates/sec

68,100 58,500

http://tools.ietf.org/html/rfc2136

 T O C T O C

 T O C T O C

 T O C T O C

Under update at 10
updates/sec

67,400 58,000

Under update at 32
updates/sec

60,900 54,900

7. Conclusions

These results are encouraging, because they show that open-source software and commodity
hardware are up to the task of providing full-scale production name service on the largest zones
in existence. There are several obvious conclusions that can be drawn from them.

Commodity hardware with BIND 9 software is fast enough by a wide margin to run large
production name service, provided that it has enough physical memory to hold the zone
data.
The rate at which the COM zone experienced changes during 2006-2008 (typically 2-4
updates per second) is inconsequentially small in terms of the amount of processing power
needed to handle those updates with RFC2136-compliant protocols such as those
implemented by BIND 9.
With minor changes to BIND 9 software, it can serve queries from a zone under update as
rapidly as it can serve queries from a static zone.
The query processing rate for signed zones is essentially the same as the query processing
rate for unsigned zones, but it requires more physical memory to serve queries from a
signed zone because they are larger.

Our testbed is available to qualified DNS and protocol researchers who wish to repeat our
experiments or run other experiments; contact info@isc.org to make arrangements.

Appendix A. Software availability

Very little custom software was necessary for this project. There are two packages developed for
it:

A rate-limited version of the Unix "cat" program that is used to control the rate at which
updates are fed to name servers. It has been tested and found to be quite accurate over an
extremely wide range of speeds, from one update per hour to tens of thousands of updates
per second. It is in ftp://ftp.isc.org/isc/dns_perf/rlcat.tar
A simple script to generate name-server update test streams from zone files. In order to
have repeatable tests, we need to have update test streams. Updates include both adds and
drops; a record needs to be in the zone before it can be dropped, and it ought not be in the
zone if it is to be added as part of the test. For this reason, the test stream must be
generated by processing of the zone that will be updated. The simple scripts that we used to
do this are in ftp://ftp.isc.org/isc/dns_perf/updgen.tar

Our compilation and coding work was done on a FreeBSD 6.2 system, and these two packages
are known to compile on FreeBSD 6 and 7 systems.

Author's Address

 Brian Reid
 Internet Systems Consortium, Inc.
 950 Charter Street
 Redwood City, CA 94063
 US

Phone: +1 650 423-1327
EMail: Brian_Reid@isc.org

http://new.isc.org/proj/dnsperf/ISC-TN-2008-1.html#toc
http://new.isc.org/proj/dnsperf/ISC-TN-2008-1.html#toc
http://new.isc.org/proj/dnsperf/ISC-TN-2008-1.html#toc
ftp://ftp.isc.org/isc/dns_perf/rlcat.tar
ftp://ftp.isc.org/isc/dns_perf/updgen.tar
mailto:Brian_Reid@isc.org

