25 #define TEMPLATE_REMATRIX_FLT
27 #undef TEMPLATE_REMATRIX_FLT
29 #define TEMPLATE_REMATRIX_DBL
31 #undef TEMPLATE_REMATRIX_DBL
33 #define TEMPLATE_REMATRIX_S16
38 #undef TEMPLATE_REMATRIX_S16
40 #define TEMPLATE_REMATRIX_S32
42 #undef TEMPLATE_REMATRIX_S32
46 #define FRONT_CENTER 2
47 #define LOW_FREQUENCY 3
50 #define FRONT_LEFT_OF_CENTER 6
51 #define FRONT_RIGHT_OF_CENTER 7
56 #define TOP_FRONT_LEFT 12
57 #define TOP_FRONT_CENTER 13
58 #define TOP_FRONT_RIGHT 14
59 #define TOP_BACK_LEFT 15
60 #define TOP_BACK_CENTER 16
61 #define TOP_BACK_RIGHT 17
62 #define NUM_NAMED_CHANNELS 18
66 int nb_in, nb_out,
in,
out;
68 if (!
s ||
s->in_convert)
70 memset(
s->matrix, 0,
sizeof(
s->matrix));
71 memset(
s->matrix_flt, 0,
sizeof(
s->matrix_flt));
72 nb_in = (
s->user_in_ch_count > 0) ?
s->user_in_ch_count :
74 nb_out = (
s->user_out_ch_count > 0) ?
s->user_out_ch_count :
77 for (
in = 0;
in < nb_in;
in++)
81 s->rematrix_custom = 1;
120 double center_mix_level,
double surround_mix_level,
121 double lfe_mix_level,
double maxval,
122 double rematrix_volume,
double *matrix_param,
127 int64_t unaccounted, in_ch_layout, out_ch_layout;
131 in_ch_layout =
clean_layout(log_context, in_ch_layout_param);
132 out_ch_layout =
clean_layout(log_context, out_ch_layout_param);
149 "Full-on remixing from 22.2 has not yet been implemented! "
150 "Processing the input as '%s'\n",
156 av_log(log_context,
AV_LOG_ERROR,
"Input channel layout '%s' is not supported\n", buf);
162 av_log(log_context,
AV_LOG_ERROR,
"Output channel layout '%s' is not supported\n", buf);
167 if(in_ch_layout & out_ch_layout & (1ULL<<
i))
171 unaccounted= in_ch_layout & ~out_ch_layout;
316 for(out_i=
i=0;
i<64;
i++){
319 if((out_ch_layout & (1ULL<<
i)) == 0)
322 if((in_ch_layout & (1ULL<<j)) == 0)
325 matrix_param[
stride*out_i + in_i] = matrix[
i][j];
327 matrix_param[
stride*out_i + in_i] =
i == j && (in_ch_layout & out_ch_layout & (1ULL<<
i));
328 sum +=
fabs(matrix_param[
stride*out_i + in_i]);
331 maxcoef=
FFMAX(maxcoef, sum);
334 if(rematrix_volume < 0)
335 maxcoef = -rematrix_volume;
337 if(maxcoef > maxval || rematrix_volume < 0){
341 matrix_param[
stride*
i + j] /= maxcoef;
345 if(rematrix_volume > 0){
348 matrix_param[
stride*
i + j] *= rematrix_volume;
371 if (
s->rematrix_maxval > 0) {
372 maxval =
s->rematrix_maxval;
379 memset(
s->matrix, 0,
sizeof(
s->matrix));
381 s->clev,
s->slev,
s->lfe_mix_level,
382 maxval,
s->rematrix_volume, (
double*)
s->matrix,
383 s->matrix[1] -
s->matrix[0],
s->matrix_encoding,
s);
389 s->matrix_flt[
i][j] =
s->matrix[
i][j];
397 int nb_in =
s->used_ch_count;
398 int nb_out =
s->out.ch_count;
402 if (!
s->rematrix_custom) {
409 s->native_matrix =
av_calloc(nb_in * nb_out,
sizeof(
int));
411 if (!
s->native_matrix || !
s->native_one)
413 for (
i = 0;
i < nb_out;
i++) {
417 for (j = 0; j < nb_in; j++) {
418 double target =
s->matrix[
i][j] * 32768 + rem;
419 ((
int*)
s->native_matrix)[
i * nb_in + j] =
lrintf(target);
420 rem += target - ((
int*)
s->native_matrix)[
i * nb_in + j];
421 sum +=
FFABS(((
int*)
s->native_matrix)[
i * nb_in + j]);
423 maxsum =
FFMAX(maxsum, sum);
425 *((
int*)
s->native_one) = 32768;
426 if (maxsum <= 32768) {
436 s->native_matrix =
av_calloc(nb_in * nb_out,
sizeof(
float));
438 if (!
s->native_matrix || !
s->native_one)
440 for (
i = 0;
i < nb_out;
i++)
441 for (j = 0; j < nb_in; j++)
442 ((
float*)
s->native_matrix)[
i * nb_in + j] =
s->matrix[
i][j];
443 *((
float*)
s->native_one) = 1.0;
448 s->native_matrix =
av_calloc(nb_in * nb_out,
sizeof(
double));
450 if (!
s->native_matrix || !
s->native_one)
452 for (
i = 0;
i < nb_out;
i++)
453 for (j = 0; j < nb_in; j++)
454 ((
double*)
s->native_matrix)[
i * nb_in + j] =
s->matrix[
i][j];
455 *((
double*)
s->native_one) = 1.0;
463 s->native_matrix =
av_calloc(nb_in * nb_out,
sizeof(
int));
464 if (!
s->native_matrix) {
468 for (
i = 0;
i < nb_out;
i++) {
471 for (j = 0; j < nb_in; j++) {
472 double target =
s->matrix[
i][j] * 32768 + rem;
473 ((
int*)
s->native_matrix)[
i * nb_in + j] =
lrintf(target);
474 rem += target - ((
int*)
s->native_matrix)[
i * nb_in + j];
477 *((
int*)
s->native_one) = 32768;
487 s->matrix32[
i][j]=
lrintf(
s->matrix[
i][j] * 32768);
489 s->matrix_ch[
i][++ch_in]= j;
491 s->matrix_ch[
i][0]= ch_in;
508 int out_i, in_i,
i, j;
517 if(
s->mix_2_1_simd ||
s->mix_1_1_simd){
519 off = len1 *
out->bps;
525 for(out_i=0; out_i<
out->ch_count; out_i++){
526 switch(
s->matrix_ch[out_i][0]){
532 in_i=
s->matrix_ch[out_i][1];
533 if(
s->matrix[out_i][in_i]!=1.0){
534 if(
s->mix_1_1_simd && len1)
535 s->mix_1_1_simd(
out->ch[out_i] ,
in->ch[in_i] ,
s->native_simd_matrix,
in->ch_count*out_i + in_i, len1);
537 s->mix_1_1_f (
out->ch[out_i]+off,
in->ch[in_i]+off,
s->native_matrix,
in->ch_count*out_i + in_i,
len-len1);
539 memcpy(
out->ch[out_i],
in->ch[in_i],
len*
out->bps);
541 out->ch[out_i]=
in->ch[in_i];
545 int in_i1 =
s->matrix_ch[out_i][1];
546 int in_i2 =
s->matrix_ch[out_i][2];
547 if(
s->mix_2_1_simd && len1)
548 s->mix_2_1_simd(
out->ch[out_i] ,
in->ch[in_i1] ,
in->ch[in_i2] ,
s->native_simd_matrix,
in->ch_count*out_i + in_i1,
in->ch_count*out_i + in_i2, len1);
550 s->mix_2_1_f (
out->ch[out_i] ,
in->ch[in_i1] ,
in->ch[in_i2] ,
s->native_matrix,
in->ch_count*out_i + in_i1,
in->ch_count*out_i + in_i2, len1);
552 s->mix_2_1_f (
out->ch[out_i]+off,
in->ch[in_i1]+off,
in->ch[in_i2]+off,
s->native_matrix,
in->ch_count*out_i + in_i1,
in->ch_count*out_i + in_i2,
len-len1);
558 for(j=0; j<
s->matrix_ch[out_i][0]; j++){
559 in_i=
s->matrix_ch[out_i][1+j];
560 v+= ((
float*)
in->ch[in_i])[
i] *
s->matrix_flt[out_i][in_i];
562 ((
float*)
out->ch[out_i])[
i]= v;
567 for(j=0; j<
s->matrix_ch[out_i][0]; j++){
568 in_i=
s->matrix_ch[out_i][1+j];
569 v+= ((
double*)
in->ch[in_i])[
i] *
s->matrix[out_i][in_i];
571 ((
double*)
out->ch[out_i])[
i]= v;
576 for(j=0; j<
s->matrix_ch[out_i][0]; j++){
577 in_i=
s->matrix_ch[out_i][1+j];
578 v+= ((int16_t*)
in->ch[in_i])[
i] *
s->matrix32[out_i][in_i];
580 ((int16_t*)
out->ch[out_i])[
i]= (v + 16384)>>15;
uint8_t pi<< 24) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0f/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16, int16_t,(*(const int16_t *) pi >> 8)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32, int32_t,(*(const int32_t *) pi >> 24)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, float, av_clip_uint8(lrintf(*(const float *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, float, av_clip_int16(lrintf(*(const float *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, float, av_clipl_int32(llrintf(*(const float *) pi *(1U<< 31)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, double, av_clip_uint8(lrint(*(const double *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, double, av_clip_int16(lrint(*(const double *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, double, av_clipl_int32(llrint(*(const double *) pi *(1U<< 31)))) #define SET_CONV_FUNC_GROUP(ofmt, ifmt) static void set_generic_function(AudioConvert *ac) { } void ff_audio_convert_free(AudioConvert **ac) { if(! *ac) return;ff_dither_free(&(*ac) ->dc);av_freep(ac);} AudioConvert *ff_audio_convert_alloc(AVAudioResampleContext *avr, enum AVSampleFormat out_fmt, enum AVSampleFormat in_fmt, int channels, int sample_rate, int apply_map) { AudioConvert *ac;int in_planar, out_planar;ac=av_mallocz(sizeof(*ac));if(!ac) return NULL;ac->avr=avr;ac->out_fmt=out_fmt;ac->in_fmt=in_fmt;ac->channels=channels;ac->apply_map=apply_map;if(avr->dither_method !=AV_RESAMPLE_DITHER_NONE &&av_get_packed_sample_fmt(out_fmt)==AV_SAMPLE_FMT_S16 &&av_get_bytes_per_sample(in_fmt) > 2) { ac->dc=ff_dither_alloc(avr, out_fmt, in_fmt, channels, sample_rate, apply_map);if(!ac->dc) { av_free(ac);return NULL;} return ac;} in_planar=ff_sample_fmt_is_planar(in_fmt, channels);out_planar=ff_sample_fmt_is_planar(out_fmt, channels);if(in_planar==out_planar) { ac->func_type=CONV_FUNC_TYPE_FLAT;ac->planes=in_planar ? ac->channels :1;} else if(in_planar) ac->func_type=CONV_FUNC_TYPE_INTERLEAVE;else ac->func_type=CONV_FUNC_TYPE_DEINTERLEAVE;set_generic_function(ac);if(ARCH_AARCH64) ff_audio_convert_init_aarch64(ac);if(ARCH_ARM) ff_audio_convert_init_arm(ac);if(ARCH_X86) ff_audio_convert_init_x86(ac);return ac;} int ff_audio_convert(AudioConvert *ac, AudioData *out, AudioData *in) { int use_generic=1;int len=in->nb_samples;int p;if(ac->dc) { av_log(ac->avr, AV_LOG_TRACE, "%d samples - audio_convert: %s to %s (dithered)\n", len, av_get_sample_fmt_name(ac->in_fmt), av_get_sample_fmt_name(ac->out_fmt));return ff_convert_dither(ac-> in
simple assert() macros that are a bit more flexible than ISO C assert().
#define av_assert0(cond)
assert() equivalent, that is always enabled.
audio channel layout utility functions
#define FFABS(a)
Absolute value, Note, INT_MIN / INT64_MIN result in undefined behavior as they are not representable ...
static __device__ float fabs(float a)
#define AV_CH_LAYOUT_STEREO_DOWNMIX
#define AV_CH_LAYOUT_SURROUND
#define AV_CH_LAYOUT_7POINT1_WIDE_BACK
void av_get_channel_layout_string(char *buf, int buf_size, int nb_channels, uint64_t channel_layout)
Return a description of a channel layout.
#define AV_CH_LAYOUT_STEREO
#define AV_CH_LAYOUT_22POINT2
int av_get_channel_layout_nb_channels(uint64_t channel_layout)
Return the number of channels in the channel layout.
uint64_t av_channel_layout_extract_channel(uint64_t channel_layout, int index)
Get the channel with the given index in channel_layout.
const char * av_get_channel_name(uint64_t channel)
Get the name of a given channel.
@ AV_MATRIX_ENCODING_DOLBY
@ AV_MATRIX_ENCODING_DPLII
#define AV_CH_FRONT_RIGHT
#define AV_CH_FRONT_RIGHT_OF_CENTER
#define AV_CH_BACK_CENTER
#define AV_CH_FRONT_LEFT_OF_CENTER
#define AV_CH_FRONT_CENTER
#define AV_CH_LOW_FREQUENCY
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
#define AV_LOG_WARNING
Something somehow does not look correct.
#define AV_LOG_VERBOSE
Detailed information.
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
void * av_mallocz(size_t size)
Allocate a memory block with alignment suitable for all memory accesses (including vectors if availab...
void * av_calloc(size_t nmemb, size_t size)
Non-inlined equivalent of av_mallocz_array().
int av_get_bytes_per_sample(enum AVSampleFormat sample_fmt)
Return number of bytes per sample.
enum AVSampleFormat av_get_packed_sample_fmt(enum AVSampleFormat sample_fmt)
Get the packed alternative form of the given sample format.
@ AV_SAMPLE_FMT_FLTP
float, planar
@ AV_SAMPLE_FMT_S16P
signed 16 bits, planar
@ AV_SAMPLE_FMT_S32P
signed 32 bits, planar
@ AV_SAMPLE_FMT_DBLP
double, planar
av_cold int swr_build_matrix(uint64_t in_ch_layout_param, uint64_t out_ch_layout_param, double center_mix_level, double surround_mix_level, double lfe_mix_level, double maxval, double rematrix_volume, double *matrix_param, int stride, enum AVMatrixEncoding matrix_encoding, void *log_context)
Generate a channel mixing matrix.
int swr_set_matrix(struct SwrContext *s, const double *matrix, int stride)
Set a customized remix matrix.
int swri_rematrix(SwrContext *s, AudioData *out, AudioData *in, int len, int mustcopy)
av_cold int swri_rematrix_init(SwrContext *s)
#define FRONT_LEFT_OF_CENTER
static int even(int64_t layout)
#define NUM_NAMED_CHANNELS
static av_cold int auto_matrix(SwrContext *s)
#define FRONT_RIGHT_OF_CENTER
static int sane_layout(int64_t layout)
static int64_t clean_layout(void *s, int64_t layout)
av_cold void swri_rematrix_free(SwrContext *s)
#define FF_ARRAY_ELEMS(a)
Audio buffer used for intermediate storage between conversion phases.
The libswresample context.
void() mix_1_1_func_type(void *out, const void *in, void *coeffp, integer index, integer len)
int swri_rematrix_init_x86(struct SwrContext *s)
void() mix_any_func_type(uint8_t **out, const uint8_t **in1, void *coeffp, integer len)
void() mix_2_1_func_type(void *out, const void *in1, const void *in2, void *coeffp, integer index1, integer index2, integer len)