
Package ‘ulid’
June 4, 2024

Type Package

Title Generate Universally Unique 'Lexicographically' 'Sortable'
Identifiers

Version 0.4.0

Date 2024-06-03

Description Universally unique identifiers ('UUIDs') can be sub-optimal for many
uses-cases because they are not the most character efficient way of encoding
128 bits of randomness; v1/v2 versions are impractical in many environments,
as they require access to a unique, stable MAC address; v3/v5 versions require
a unique seed and produce randomly distributed IDs, which can cause fragmentation
in many data structures; v4 provides no other information than randomness which
can cause fragmentation in many data structures. Providing an alternative, 'ULIDs'
(<https://github.com/ulid/spec>) have 128-bit compatibility with 'UUID', 1.21e+24
unique 'ULIDs' per millisecond, support standard (text) sorting, canonically encoded
as a 26 character string, as opposed to the 36 character 'UUID', use 'base32'
encoding for better efficiency and readability (5 bits per character), are case
insensitive, have no special characters (i.e. are 'URL' safe) and have a monotonic
sort order (correctly detects and handles the same millisecond).

URL https://github.com/eddelbuettel/ulid

BugReports https://github.com/eddelbuettel/ulid/issues

NeedsCompilation yes

Encoding UTF-8

License MIT + file LICENSE

Suggests tinytest

Imports Rcpp

LinkingTo Rcpp

RoxygenNote 7.3.1

Author Bob Rudis [aut] (<https://orcid.org/0000-0001-5670-2640>),
Suyash Verma [aut] (ULID C++ <https://github.com/suyash/ulid/>),
Dirk Eddelbuettel [cre] (<https://orcid.org/0000-0001-6419-907X>)

Maintainer Dirk Eddelbuettel <edd@debian.org>

1

https://github.com/ulid/spec
https://github.com/eddelbuettel/ulid
https://github.com/eddelbuettel/ulid/issues
https://orcid.org/0000-0001-5670-2640
https://github.com/suyash/ulid/
https://orcid.org/0000-0001-6419-907X

2 generate

Repository CRAN

Date/Publication 2024-06-04 09:52:31 UTC

R topics documented:
generate . 2

Index 5

generate Generate ULID

Description

generate() generates a new Universally Unique Lexicographically Sortable Identifier. Several
aliases are available for convience and backwards-compatibility.

This function generates a new Universally Unique Lexicographically Sortable Identifier from a
vector of POSIXct timestamps.

As described in the ulid specification repo, and slightly edited here, UUID use can be suboptimal
for many uses-cases because:(grifted from https://github.com/ulid/spec)

UUID can be suboptimal for many uses-cases because:

• It isn’t the most character efficient way of encoding 128 bits of randomness

• UUID v1/v2 is impractical in many environments, as it requires access to a unique, stable
MAC address

• UUID v3/v5 requires a unique seed and produces randomly distributed IDs, which can cause
fragmentation in many data structures

• UUID v4 provides no other information than randomness which can cause fragmentation in
many data structures

Instead, an alternative is proposed in ULID:

ulid() // 01ARZ3NDEKTSV4RRFFQ69G5FAV

with the following properties:

• 128-bit compatibility with UUID

• 1.21e+24 unique ULIDs per millisecond

• Lexicographically sortable!

• Canonically encoded as a 26 character string, as opposed to the 36 character UUID

• Uses Crockford’s base32 for better efficiency and readability (5 bits per character)

• Case insensitive

• No special characters (URL safe)

• Monotonic sort order (correctly detects and handles the same millisecond)

https://github.com/ulid/spec
https://github.com/ulid/spec
https://github.com/ulid/spec
https://github.com/ulid/spec

generate 3

01AN4Z07BY 79KA1307SR9X4MV3

|----------| |----------------|
Timestamp Randomness
48bits 80bits

Components
Timestamp

• 48 bit integer

• UNIX-time in milliseconds

• Will not run out of space until the year 10889 AD.

Randomness

• 80 bits

• Cryptographically secure source of randomness, if possible

Sorting
The left-most character must be sorted first, and the right-most character sorted last (lexical order).
The default ASCII character set must be used. Within the same millisecond, sort order is not
guaranteed.

Usage

generate(n = 1L)

unmarshal(ulids)

ts_generate(tsv)

ulid(n = 1L)

ulid_generate(n = 1L)

ULIDgenerate(n = 1L)

Arguments

n number of id’s to generate (default = 1)

ulids character ULIDs (e.g. created with generate())

tsv vector of POSIXct values

Details

Note that up until release 0.3.1, the implementations had limitations that resulted in second rather
than millisecond resolution. This has been addressed for release 0.4.0 and is now supported as
expected.

4 generate

Value

A data.frame with two columns ts and rnd.

Author(s)

Bob Rudis (bob@rud.is) wrote the package based on ulid C++ library by Suyash Verma.

Dirk Eddelbuettel now maintains the package.

See Also

The ulid specification provides the reference.

Examples

ULIDgenerate()
unmarshal(generate())
ts_generate(as.POSIXct("2017-11-01 15:00:00", origin="1970-01-01"))

https://github.com/ulid/spec

Index

generate, 2

ts_generate (generate), 2

ulid (generate), 2
ulid-package (generate), 2
ulid_generate (generate), 2
ULIDgenerate (generate), 2
unmarshal (generate), 2

5

	generate
	Index

