Package 'sapo'

October 11, 2024

Type Package

Title Spatial Association of Different Types of Polygon

Version 0.8.0

Date 2024-10-02

Description In ecology, spatial data is often represented using polygons. These polygons can represent a variety of spatial entities, such as ecological patches, animal home ranges, or gaps in the forest canopy. Researchers often need to determine if two spatial processes, represented by these polygons, are independent of each other. For instance, they might want to test if the home range of a particular animal species is influenced by the presence of a certain type of vegetation. To address this, Godoy et al. (2022) (<doi:10.1016/j.spasta.2022.100695>) developed conditional Monte Carlo tests. These tests are designed to assess spatial independence while taking into account the shape and size of the polygons.

License GPL (>= 3)

Encoding UTF-8

SystemRequirements GDAL (>= 2.0.1), GEOS (>= 3.4.0), PROJ (>= 4.8.0)

Imports sf, methods, stats

Depends R (>= 4.0)

URL https://github.com/lcgodoy/sapo/

BugReports https://github.com/lcgodoy/sapo/issues/

RoxygenNote 7.3.2

Language en-US

Suggests knitr, rmarkdown

VignetteBuilder knitr

NeedsCompilation no

Author Lucas da Cunha Godoy [aut, cre] (<https://orcid.org/0000-0003-4265-972X>)

Maintainer Lucas da Cunha Godoy <lcgodoy@duck.com>

Repository CRAN

Date/Publication 2024-10-11 08:20:02 UTC

13

Contents

calc_h	2
cmc_psat	3
create_jump	4
fix_dist	5
hfun	5
adist	6
im	7
m_ac	7
mad	8
mad_ac	8
mean_aux	9
pre_ts	9
sapo	10
s_im	
s_mad	10
toroidal_shift	11
translate_by_pt	11

Index

calc_h

 $h_{12}(t)$ from matrix

Description

Computes the h_{12} (K or L) based on a distance matrix based on a method

Usage

calc_h(x, var_st = FALSE, dists = NULL)

Arguments

x	distance matrix
var_st	logical scalar indicating if the L function should be used instead
dists	vector of distances to compute $h_{12}(t)$.

Value

a numeric vector

cmc_psat

Description

A Monte Carlo test to verify if two sets of polygons are associated based in a global envelope of the functions $K_{12}(d)$ and $L_{12}(d)$ using different test statistics.

Usage

```
cmc_psat(
   p1,
   p2,
   id_col = NULL,
   n_sim = 499L,
   alpha = 0.01,
   var_st = TRUE,
   ts = "SMAD",
   distances = NULL,
   hausdorff = TRUE,
   method = "rnd_poly"
)
```

Arguments

p1	a sf object containing one column specifying the objects id.
p2	a sf object containing one column specifying the objects id.
id_col	a character or integer indicating the column of p1 storing the unique identi- fier for the polygons/sample units.
n_sim	an integer corresponding to the number of Monte Carlo simulations for the test
alpha	a numeric indicating the confidence level.
var_st	use the variance stabilizing funciton?
ts	a character associated to a test statistic. Inputs acepted: c('IM', 'MAD', 'SIM', 'SMAD', 'IMDQ', 'MADDQ').
distances	a numeric vector indicating the distances to evaluate $H(d)$. If NULL then the range considered goes from 5% to 20% of the max distance that can be observed inside the study region.
hausdorff	a logical scalar indicating whether the Hausdorff distance should be used (default is TRUE).
method	<pre>(default = "rng_poly") a character indicating the method used to deal with bro- ken polygons in the Toroidal Shift. Valid options are c("min", "max", "mean", "rnd_poly", "rnd_dist", "min_norm", "max_norm", "hybrid", "hyb_center", "hybrid_nc", "old_min").</pre>

Value

a list with values:

p_value a numeric scalar giving the p-value of the test

- mc_sample a numeric vector giving the test statistic for each of the Monte Carlo simulations
- **mc_funct** a matrix where each line correspond to the function (K or L) estimated for the Monte Carlo simulations

distances numeric vector containing the distances where mc_func were evaluated.

alpha a numeric scalar giving the significance level

rejects a logical scalar, TRUE if the null hypothesis is reject

Examples

```
library(sapo)
library(sf)
set.seed(2024)

## loading toy data
poly1 <- system.file("extdata", "poly1.rds", package = "sapo") |>
   readRDS()
poly2 <- system.file("extdata", "poly2.rds", package = "sapo") |>
   readRDS()

my_ht <- cmc_psat(poly1, poly2, n_sim = 199)
my_ht$p_value</pre>
```

create_jump

Create jumps for random movements

Description

Create jumps for random movements

Usage

create_jump(unique_bb)

Arguments

unique_bb a bbox shared between both "Polygon Patterns"

Details

This is an internal function.

fix_dist

Value

a sfc object representing a random jump or shift.

Author(s)

Lucas Godoy

fix_dist

Fix distance matrix containing broken polygons

Description

fix a polygons' distance matrix based on a given method. This function assumes the polygon that has been broken is represented by the rows of the distance matrix.

Usage

fix_dist(x, method = "rnd_poly")

Arguments

х	distance matrix
method	method used to fix. The options are "min", "max", "mean", "rnd_poly", "rnd_dist",
	"min_norm", "max_norm", "hybrid", "hyb_center", "hybrid_nc", "old_min"

Value

a distance matrix

```
hfun
```

 $h_{12}(t)$ from polygons

Description

Computes the h_{12} (K or L) based on a distance matrix based on a method

Usage

```
h_func(
    p1,
    p2,
    hausdorff = TRUE,
    method = "rnd_poly",
    var_st = FALSE,
    dists = NULL
)
h_func.list(x, ...)
```

Arguments

р1	sf object
p2	sf object
hausdorff	logical parameter indicating whether the Hausdorff distance should be used
method	method to deal with broken polygons
var_st	logical scalar indicating if the L function should be used instead
dists	vector of distances to compute $h_{12}(t)$.
x	a list with two sf objects.
•••	Parameters to be used with h_func when inputting a list.

Value

a numeric vector

iadist

ID aware distance matrix

Description

Distance between polygons accounting for toroidal shift.

Usage

iadist(p1, p2, hausdorff = TRUE, method = "rnd_poly")

Arguments

р1	a sf object containing one column specifying the objects id.
p2	a sf object containing one column specifying the objects id.
hausdorff	logical scalar indicating whether the Hausdorff distance should be used.
method	method for "fixing" the distance matrix.

Value

a distance matrix.

Author(s)

Lucas Godoy

im

Integram Measure

Description

Integram Measure

Usage

im(x, h = 1)

Arguments

х	numeric matrix
h	numeric

Value

numeric vector

im_ac

Integram Measure with Assimetry Correction

Description

Integram Measure with Assimetry Correction

Usage

 $im_ac(x, h = 1)$

Arguments

x	numeric matrix
h	numeric

Value

numeric vector

mad

Description

Maximum Absolute Deviation

Usage

mad(x)

Arguments

x numeric matrix

Value

numeric vector

mad_ac

Maximum Absolute Deviation with Assimetry Correction

Description

Maximum Absolute Deviation with Assimetry Correction

Usage

 $mad_ac(x)$

Arguments

x numeric matrix

Value

numeric vector

mean_aux

Description

aux function to calculate the mean of a vector when removing each of its elements one by one.

Usage

mean_aux(x)

Arguments

x a numeric vector

Value

a numeric vector

Author(s)

Lucas Godoy

pre_ts

Pre-TS

Description

Create rigid copies of a polygon. This function an auxilliary function for the Toroidal Shift method

Usage

pre_ts(poly, bb = NULL, id_col = NULL)

Arguments

poly	an object of class sf or sfc.
bb	(optional) a unique bounding box.
id_col	a character indicating the id column in poly.

Value

an sf with 8 additional rigid copies of poly.

Author(s)

Lucas Godoy

sapo

Description

sapo: Spatial Association of Polygon Types

s_im

Studentized Integram Measure

Description

Studentized Integram Measure

Usage

 $s_{im}(x, h = 1)$

Arguments

Х	numeric matrix
h	numeric

Value

numeric vector

s_mad

Studentized Maximum Absolute Deviation

Description

Studentized Maximum Absolute Deviation

Usage

 $s_mad(x)$

Arguments

x numeric matrix

Value

numeric vector

toroidal_shift Toroidal Shift

Description

Toroidal Shift

Usage

```
toroidal_shift(x, y, shifted = FALSE, unique_bb = NULL)
```

Arguments

Х	a sf or sfc object. Its geometry may contain POLYGONS and/or POINTS.
У	a sf or sfc object. Its geometry may contain POLYGONS and/or POINTS.
shifted	logical indicating whether x has been "shifted". This parameter is mainly for internal use and testing.
unique_bb	a bbox shared between both "Polygon Patterns"

Value

a list

Author(s)

Lucas Godoy

translate_by_pt Translate an sf object by a "point"

Description

Translate an sf object by a "point"

Usage

translate_by_pt(pt, poly)

Arguments

pt	sfc representing a shift.
poly	sfc of sf to be shifted

Value

a sf or sfc representing poly shifted by pt

translate_by_pt

Author(s)

Lucas Godoy

Index

 $calc_h, 2$ $\texttt{cmc_psat}, 3$ create_jump, 4 fix_dist, 5 h_func (hfun), 5 hfun, <mark>5</mark> iadist,<mark>6</mark> im,7 im_ac,7 mad, 8 $mad_{ac}, 8$ $mean_aux, 9$ pre_ts,9 s_im, 10 $\texttt{s_mad}, 10$ sapo, 10 toroidal_shift, 11 translate_by_pt, 11