Package 'robomit'

January 31, 2025

Version 1.0.7

Date 2025-01-12

Title Robustness Checks for Omitted Variable Bias

Maintainer Sergei Schaub <sergei.schaub@agroscope.admin.ch>

Description Robustness checks for omitted variable bias. The package includes robustness checks proposed by Oster (2019). The 'robomit' package computes i) the bias-adjusted treatment correlation or effect and ii) the degree of selection on unobservables relative to observables (with respect to the treatment variable) that would be necessary to eliminate the result based on the framework by Oster (2019). The code is based on the 'psacalc' command in 'Stata'. Additionally, 'robomit' offers a set of sensitivity analysis and visualization functions. See Oster, E. 2019. <doi:10.1080/07350015.2016.1227711>. Additionally, see Diegert, P., Masten, M. A., & Poirier, A. (2022) for a recent discussion of the topic: <doi:10.48550/arXiv.2206.02303>.

License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.3.2

Imports plm, dplyr, ggplot2, broom, tidyr, tibble, stats,

Suggests testthat

NeedsCompilation no

Author Sergei Schaub [aut, cre] (<https://orcid.org/0000-0001-8477-3737>), ETH Zurich [cph]

Repository CRAN

Date/Publication 2025-01-31 17:20:02 UTC

Contents

o_beta										•						•				•				•	2	2
o_beta_	boot																							•	3	3
o_beta_	boot	_in	f.																						5	5
o_beta_	boot	_vi	z.						 								 							•	6	5
o_beta_	rsq .							•	 					•						•	•	•	•		8	3

o_beta

o_l	oeta_rsq_viz .																																			10
0_0	lelta																																			11
0_0	lelta_boot																																			12
0_0	lelta_boot_inf	•				•	•					•					•	•	•	•	•				•				•		•					14
0_0	lelta_boot_viz																																			16
0_0	lelta_rsq	•																							•											18
0_0	lelta_rsq_viz .	•	•	•		•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	19
																																				21

Index

o_beta

beta*

Description

Estimates beta*, i.e., the bias-adjusted treatment effect (or correlation) (following Oster 2019). The code is based on the psacalc command in Stata.

Usage

```
o_beta(y, x, con, w = NULL, id = "none", time = "none", delta = 1,
R2max, type, data)
```

Arguments

У	Name of the dependent variable (as string).
x	Name of the independent treatment variable (i.e., variable of interest; as string).
con	Name of related control variables. Provided as string in the format: "w + z +".
W	weights (only for weighted estimations). Warning: For weighted panel models R can report different R-square than Stata, leading deviation between R and Stata results.
id	Name of the individual id variable (e.g. firm or farm; as string). Only applicable for fixed effect panel models.
time	Name of the time id variable (e.g. year or month; as string). Only applicable for fixed effect panel models.
delta	delta for which beta* should be estimated (default is delta = 1).
R2max	Maximum R-square for which beta* should be estimated.
type	Model type (either <i>lm</i> or <i>plm</i> ; as string).
data	Dataset.

Details

Estimates beta*, i.e., the bias-adjusted treatment effect (or correlation).

Value

Returns tibble object, which includes beta* and various other information.

o_beta_boot

References

Oster, E. (2019) Unobservable Selection and Coefficient Stability: Theory and Evidence. Journal of Business & Economic Statistics, 37, 187-204.

Examples

```
# load data, e.g. the in-build mtcars dataset
data("mtcars")
data_oster <- mtcars
# preview of data
head(data_oster)
# load robomit
require(robomit)
# estimate beta*
o_beta(y = "mpg",  # dependent variable
        x = "wt",  # independent treatment variable
        con = "hp + qsec",  # related control variables
        delta = 1,  # delta
        R2max = 0.9,  # maximum R-square
        type = "lm",  # model type
        data = data_oster) # dataset</pre>
```

o_beta_boot	Bootstrapped beta*s
-------------	---------------------

Description

Estimates bootstrapped beta*s, i.e., the bias-adjusted treatment effects (or correlations) (following Oster 2019).

Usage

```
o_beta_boot(y, x, con, w = NULL, id = "none", time = "none", delta = 1,
R2max, sim, obs, rep, type, useed = NA, data)
```

У	Name of the dependent variable (as string).
x	Name of the independent treatment variable (i.e., variable of interest; as string).
con	Name of related control variables. Provided as string in the format: " $w + z +$ ".
W	weights (only for weighted estimations). Warning: For weighted panel models R can report different R-square than Stata, leading deviation between R and Stata results.

id	Name of the individual id variable (e.g. firm or farm; as string). Only applicable for fixed effect panel models.
time	Name of the time id variable (e.g. year or month; as string). Only applicable for fixed effect panel models.
delta	delta for which beta*s should be estimated (default is delta = 1).
R2max	Maximum R-square for which beta*s should be estimated.
sim	Number of simulations.
obs	Number of draws per simulation.
rep	Bootstrapping either with (= TRUE) or without (= FALSE) replacement.
type	Model type (either <i>lm</i> or <i>plm</i> ; as string).
useed	User defined seed.
data	Dataset.

Estimates bootstrapped beta*s, i.e., the bias-adjusted treatment effects (or correlations) (following Oster 2019). Bootstrapping can either be done with or without replacement. The function supports linear cross-sectional (see *lm* objects in R) and fixed effect panel (see *plm* objects in R) models.

Value

Returns tibble object, which includes bootstrapped beta*s.

References

Oster, E. (2019). Unobservable Selection and Coefficient Stability: Theory and Evidence. Journal of Business & Economic Statistics, 37, 187-204.

Examples

o_beta_boot_inf

```
rep = FALSE,  # bootstrapping with or without replacement
type = "lm",  # model type
useed = 123,  # seed
data = data_oster)  # dataset
```

```
o_beta_boot_inf
```

Bootstrapped mean beta* and confidence intervals

Description

Provides the mean and confidence intervals of estimated bootstrapped beta*s, i.e., the bias-adjusted treatment effects (or correlations) (following Oster 2019).

Usage

o_beta_boot_inf(y, x, con, w = NULL, id = "none", time = "none", delta = 1, R2max, sim, obs, rep, CI, type, useed = NA, data)

У	Name of the dependent variable (as string).
х	Name of the independent treatment variable (i.e., variable of interest; as string).
con	Name of related control variables. Provided as string in the format: " $w + z +$ ".
W	weights (only for weighted estimations). Warning: For weighted panel models R can report different R-square than Stata, leading deviation between R and Stata results.
id	Name of the individual id variable (e.g. firm or farm; as string). Only applicable for fixed effect panel models.
time	Name of the time id variable (e.g. year or month; as string). Only applicable for fixed effect panel models.
delta	delta for which beta*s should be estimated (default is $delta = 1$).
R2max	Maximum R-square for which beta*s should be estimated.
sim	Number of simulations.
obs	Number of draws per simulation.
rep	Bootstrapping either with (= TRUE) or without (= FALSE) replacement
CI	Confidence intervals, indicated as vector. Can be and/or 90, 95, 99.
type	Model type (either <i>lm</i> or <i>plm</i> ; as string).
useed	User defined seed.
data	Dataset.

Provides the mean and confidence intervals of estimated bootstrapped beta*s, i.e., the bias-adjusted treatment effects (or correlations) (following Oster 2019). Bootstrapping can either be done with or without replacement. The function supports linear cross-sectional (see *lm* objects in R) and fixed effect panel (see *plm* objects in R) models.

Value

Returns tibble object, which includes the mean and confidence intervals of estimated bootstrapped beta*s.

References

Oster, E. (2019). Unobservable Selection and Coefficient Stability: Theory and Evidence. Journal of Business & Economic Statistics, 37, 187-204.

Examples

```
# load data, e.g. the in-build mtcars dataset
data("mtcars")
data_oster <- mtcars
# preview of data</pre>
```

head(data_oster)

load robomit
require(robomit)

 $\ensuremath{\texttt{\#}}$ compute the mean and confidence intervals of estimated bootstrapped beta*s

o_beta_boot_viz Visualization of bootstrapped beta*s

Description

Estimates and visualizes bootstrapped beta*s, i.e., the bias-adjusted treatment effects (or correlations) (following Oster 2019).

Usage

```
o_beta_boot_viz(y, x, con, w = NULL, id = "none", time = "none",
delta = 1, R2max, sim, obs, rep, CI, type, norm = TRUE, bin,
col = c("#08306b","#4292c6","#c6dbef"), nL = TRUE, mL = TRUE, useed = NA, data)
```

Arguments

 x Name of the independent treatment variable (i.e., variable of interest; as string). con Name of related control variables. Provided as string in the format: "w + z +". w weights (only for weighted estimations). Warning: For weighted panel models R can report different R-square than Stata, leading deviation between R and Stata results. id Name of the individual id variable (e.g. firm or farm; as string). Only applicable for fixed effect panel models.
 w weights (only for weighted estimations). Warning: For weighted panel models R can report different R-square than Stata, leading deviation between R and Stata results. id Name of the individual id variable (e.g. firm or farm; as string). Only applicable for fixed effect panel models.
 can report different R-square than Stata, leading deviation between R and Stata results. id Name of the individual id variable (e.g. firm or farm; as string). Only applicable for fixed effect panel models.
for fixed effect panel models.
time Name of the time id variable (e.g. year or month; as string). Only applicable for fixed effect panel models.
delta delta for which beta*s should be estimated (default is delta = 1).
R2max Maximum R-square for which beta*s should be estimated.
sim Number of simulations.
obs Number of draws per simulation.
rep Bootstrapping either with (= TRUE) or without (= FALSE) replacement
CI Confidence intervals, indicated as vector. Can be and/or 90, 95, 99.
type Model type (either <i>lm</i> or <i>plm</i> ; as string).
norm Option to include a normal distribution in the plot (default is norm = TURE).
bin Number of bins used in the histogram.
colColors used to indicate different confidence interval levels (indicated as vector). Needs to be the same length as the variable CI. The default is a blue color range.
nL Option to include a red vertical line at 0 (default is $nL = TRUE$).
mL Option to include a vertical line at mean of all beta*s (default is $mL = TRUE$).
useed User defined seed.
data Dataset.

Details

Estimates and visualizes bootstrapped beta*s, i.e., the bias-adjusted treatment effects (or correlations) (following Oster 2019). Bootstrapping can either be done with or without replacement. The function supports linear cross-sectional (see *lm* objects in R) and fixed effect panel (see *plm* objects in R) models.

Value

Returns ggplot2 object, which depicts the bootstrapped beta*s.

References

Oster, E. (2019). Unobservable Selection and Coefficient Stability: Theory and Evidence. Journal of Business & Economic Statistics, 37, 187-204.

Examples

o_beta_rsq

beta*s over a range of maximum R-squares

Description

Estimates beta*s, i.e., the bias-adjusted treatment effects (or correlations) (following Oster 2019) over a range of maximum R-squares.

Usage

```
o_beta_rsq(y, x, con, w = NULL, id = "none", time = "none", delta = 1,
type, data)
```

o_beta_rsq

Arguments

У	Name of the dependent variable (as string).
x	Name of the independent treatment variable (i.e., variable of interest; as string).
con	Name of related control variables. Provided as string in the format: " $w + z +$ ".
W	weights (only for weighted estimations). Warning: For weighted panel models R can report different R-square than Stata, leading deviation between R and Stata results.
id	Name of the individual id variable (e.g. firm or farm; as string). Only applicable for fixed effect panel models.
time	Name of the time id variable (e.g. year or month; as string). Only applicable for fixed effect panel models.
delta	delta for which beta*s should be estimated (default is delta = 1).
type	Model type (either <i>lm</i> or <i>plm</i> ; as string).
data	Dataset.

Details

Estimates beta*s, i.e., the bias-adjusted treatment effects (or correlations) (following Oster 2019) over a range of maximum R-squares. The range of maximum R-squares starts from the R-square of the controlled model rounded up to the next 1/100 to 1. The function supports linear cross-sectional (see *lm* objects in R) and fixed effect panel (see *plm* objects in R) models.

Value

Returns tibble object, which includes beta*s over a range of maximum R-squares.

References

Oster, E. (2019). Unobservable Selection and Coefficient Stability: Theory and Evidence. Journal of Business & Economic Statistics, 37, 187-204.

Examples

```
type = "lm",  # model type
data = data_oster)  # dataset
```

o_beta_rsq_viz Visualization of beta*s over a range of maximum R-squares

Description

Estimates and visualizes beta*s, i.e., the bias-adjusted treatment effects (or correlations) (following Oster 2019) over a range of maximum R-squares.

Usage

```
o_beta_rsq_viz(y, x, con, w = NULL, id = "none", time = "none", delta = 1,
type, data)
```

Arguments

У	Name of the dependent variable (as string).
х	Name of the independent treatment variable (i.e., variable of interest; as string).
con	Name of related control variables. Provided as string in the format: " $w + z +$ ".
W	weights (only for weighted estimations). Warning: For weighted panel models R can report different R-square than Stata, leading deviation between R and Stata results.
id	Name of the individual id variable (e.g. firm or farm; as string). Only applicable for fixed effect panel models.
time	Name of the time id variable (e.g. year or month; as string). Only applicable for fixed effect panel models.
delta	delta for which beta*s should be estimated (default is $delta = 1$).
type	Model type (either <i>lm</i> or <i>plm</i> ; as string).
data	Dataset.

Details

Estimates and visualizes beta*s, i.e., the bias-adjusted treatment effects (or correlations) (following Oster 2019) over a range of maximum R-squares. The range of maximum R-squares starts from the R-square of the controlled model rounded up to the next 1/100 to 1. The function supports linear cross-sectional (see *lm* objects in R) and fixed effect panel (see *plm* objects in R) models.

Value

Returns ggplot2 object, which depicts beta*s over a range of maximum R-squares.

References

Oster, E. (2019). Unobservable Selection and Coefficient Stability: Theory and Evidence. Journal of Business & Economic Statistics, 37, 187-204.

o_delta

Examples

```
o_delta
```

delta*

Description

Estimates delta*, i.e., the degree of selection on unobservables relative to observables (with respect to the treatment variable) that would be necessary to eliminate the result (following Oster 2019). The code is based on the psacalc command in Stata.

Usage

```
o_delta(y, x, con, w = NULL, id = "none", time = "none", beta = 0, R2max,
type, data)
```

У	Name of the dependent variable (as string).
х	Name of the independent treatment variable (i.e., variable of interest; as string).
con	Name of related control variables. Provided as string in the format: " $w + z +$ ".
W	weights (only for weighted estimations). Warning: For weighted panel models R can report different R-square than Stata, leading deviation between R and Stata results.
id	Name of the individual id variable (e.g. firm or farm; as string). Only applicable for fixed effect panel models.
time	Name of the time id variable (e.g. year or month; as string). Only applicable for fixed effect panel models.
beta	beta for which delta* should be estimated (default is beta = 0).

Estimates delta*, i.e., the degree of selection on unobservables relative to observables (with respect to the treatment variable) that would be necessary to eliminate the result (following Oster 2019). The function supports linear cross-sectional (see *lm* objects in R) and fixed effect panel (see *plm* objects in R) models.

Value

Returns tibble object, which includes delta* and various other information.

References

Oster, E. (2019). Unobservable Selection and Coefficient Stability: Theory and Evidence. Journal of Business & Economic Statistics, 37, 187-204.

Examples

```
# load data, e.g. the in-build mtcars dataset
data("mtcars")
data_oster <- mtcars
# preview of data
head(data_oster)
# load robomit
require(robomit)
# estimate delta*
o_delta(y = "mpg",
                          # dependent variable
       x = "wt",
                          # independent treatment variable
       con = "hp + qsec", # related control variables
       beta = 0,
                           # beta
                     # maximum R-square
       R2max = 0.9,
       type = "lm",
                            # model type
       data = data_oster) # dataset
```

o_delta_boot

Bootstrapped delta*s

Description

Estimates bootstrapped delta*s, i.e., the degree of selection on unobservables relative to observables (with respect to the treatment variable) that would be necessary to eliminate the result (following Oster 2019).

o_delta_boot

Usage

o_delta_boot(y, x, con, w = NULL, id = "none", time = "none", beta = 0, R2max, sim, obs, rep, type, useed = NA, data)

Arguments

У	Name of the dependent variable (as string).
x	Name of the independent treatment variable (i.e., variable of interest; as string).
con	Name of related control variables. Provided as string in the format: " $w + z +$ ".
W	weights (only for weighted estimations). Warning: For weighted panel models R can report different R-square than Stata, leading deviation between R and Stata results.
id	Name of the individual id variable (e.g. firm or farm; as string). Only applicable for fixed effect panel models.
time	Name of the time id variable (e.g. year or month; as string). Only applicable for fixed effect panel models.
beta	beta for which delta*s should be estimated (default is beta = 0).
R2max	Maximum R-square for which delta*s should be estimated.
sim	Number of simulations.
obs	Number of draws per simulation.
rep	Bootstrapping either with (= TRUE) or without (= FALSE) replacement.
type	Model type (either <i>lm</i> or <i>plm</i> ; as string).
useed	User defined seed.
data	Dataset.

Details

Estimates bootstrapped delta*s, i.e., the degree of selection on unobservables relative to observables (with respect to the treatment variable) that would be necessary to eliminate the result (following Oster 2019). Bootstrapping can either be done with or without replacement. The function supports linear cross-sectional (see *lm* objects in R) and fixed effect panel (see *plm* objects in R) models.

Value

Returns tibble object, which includes bootstrapped delta*s.

References

Oster, E. (2019). Unobservable Selection and Coefficient Stability: Theory and Evidence. Journal of Business & Economic Statistics, 37, 187-204.

Examples

```
# load data, e.g. the in-build mtcars dataset
data("mtcars")
data_oster <- mtcars</pre>
# preview of data
head(data_oster)
# load robomit
require(robomit)
# estimate bootstrapped delta*s
o_delta_boot(y = "mpg",
                               # dependent variable
            x = "wt",
                             # independent treatment variable
            con = "hp + qsec", # related control variables
            beta = 0,
                       # beta
                           # maximum R-square
            R2max = 0.9,
            sim = 100,
                             # number of simulations
            obs = 30,
                             # draws per simulation
                           # bootstrapping with or without replacement
            rep = FALSE,
            type = "lm",
                             # model type
            useed = 123,
                             # seed
            data = data_oster) # dataset
```

o_delta_boot_inf Bootstrapped mean delta* and confidence intervals

Description

Provides the mean and confidence intervals of bootstrapped delta*s, i.e., the degree of selection on unobservables relative to observables (with respect to the treatment variable) that would be necessary to eliminate the result (following Oster 2019).

Usage

```
o_delta_boot_inf(y, x, con, w = NULL, id = "none", time = "none",
beta = 0, R2max, sim, obs, rep, CI, type, useed = NA, data)
```

Arguments

У	Name of the dependent variable (as string).
х	Name of the independent treatment variable (i.e., variable of interest; as string).
con	Name of related control variables. Provided as string in the format: " $w + z +$ ".
W	weights (only for weighted estimations). Warning: For weighted panel models R can report different R-square than Stata, leading deviation between R and Stata results.
id	Name of the individual id variable (e.g. firm or farm; as string). Only applicable for fixed effect panel models.

14

time	Name of the time id variable (e.g. year or month; as string). Only applicable for fixed effect panel models.
beta	beta for which delta*s should be estimated (default is beta = 0)
R2max	Maximum R-square for which delta*s should be estimated.
sim	Number of simulations.
obs	Number of draws per simulation.
rep	Bootstrapping either with (= TRUE) or without (= FALSE) replacement
CI	Confidence intervals, indicated as vector. Can be and/or 90, 95, 99.
type	Model type (either <i>lm</i> or <i>plm</i> ; as string).
useed	User defined seed.
data	Dataset.

Provides the mean and confidence intervals of bootstrapped delta*s, i.e., the degree of selection on unobservables relative to observables (with respect to the treatment variable) that would be necessary to eliminate the result (following Oster 2019). Bootstrapping can either be done with or without replacement. The function supports linear cross-sectional (see *lm* objects in R) and fixed effect panel (see *plm* objects in R) models.

Value

Returns tibble object, which includes the mean and confidence intervals of bootstrapped delta*s.

References

Oster, E. (2019). Unobservable Selection and Coefficient Stability: Theory and Evidence. Journal of Business & Economic Statistics, 37, 187-204.

Examples

```
obs = 30,# draws per simulationrep = FALSE,# bootstrapping with or without replacementCI = c(90,95,99),# confidence intervalstype = "lm",# model typeuseed = 123,# seeddata = data_oster)# dataset
```

o_delta_boot_viz Visualization of bootstrapped delta*s

Description

Estimates and visualizes bootstrapped delta*s, i.e., the degree of selection on unobservables relative to observables (with respect to the treatment variable) that would be necessary to eliminate the result (following Oster 2019).

Usage

```
o_delta_boot_viz(y, x, con, w = NULL, id = "none", time = "none",
beta = 0, R2max, sim, obs, rep, CI, type, norm = TRUE, bin,
col = c("#08306b","#4292c6","#c6dbef"), nL = TRUE, mL = TRUE, useed = NA, data)
```

Name of the dependent variable (as string).
Name of the independent treatment variable (i.e., variable of interest; as string).
Name of related control variables. Provided as string in the format: " $w + z +$ ".
weights (only for weighted estimations). Warning: For weighted panel models R can report different R-square than Stata, leading deviation between R and Stata results.
Name of the individual id variable (e.g. firm or farm; as string). Only applicable for fixed effect panel models.
Name of the time id variable (e.g. year or month; as string). Only applicable for fixed effect panel models.
beta for which delta*s should be estimated (default is beta = 0).
Maximum R-square for which delta*s should be estimated.
Number of simulations.
Number of draws per simulation.
Bootstrapping either with (= TRUE) or without (= FALSE) replacement
Confidence intervals, indicated as vector. Can be and/or 90, 95, 99.
Model type (either <i>lm</i> or <i>plm</i> ; as string).
Option to include a normal distribution in the plot (default is norm = TURE).
Number of bins used in the histogram.

col	Colors used to indicate different confidence interval levels (indicated as vector).
	Needs to be the same length as the variable CI. The default is a blue color range.
nL	Option to include a red vertical line at 0 (default is $nL = TRUE$).
mL	Option to include a vertical line at beta* mean (default is mL = TRUE).
useed	User defined seed.
data	Dataset.

Estimates and visualizes bootstrapped delta*s, i.e., the degree of selection on unobservables relative to observables (with respect to the treatment variable) that would be necessary to eliminate the result (following Oster 2019). Bootstrapping can either be done with or without replacement. The function supports linear cross-sectional (see *lm* objects in R) and fixed effect panel (see *plm* objects in R) models.

Value

Returns ggplot2 object, which depicts the bootstrapped delta*s.

References

Oster, E. (2019). Unobservable Selection and Coefficient Stability: Theory and Evidence. Journal of Business & Economic Statistics, 37, 187-204.

Examples

```
# load data, e.g. the in-build mtcars dataset
data("mtcars")
data_oster <- mtcars</pre>
```

```
# preview of data
head(data_oster)
```

load robomit
require(robomit)

```
# estimate and visualize bootstrapped delta*s
```

```
x = "wt",
                        # independent treatment variable
           con = "hp + qsec", # related control variables
           beta = 0,
R2max = 0.9,
sim = 100,
                        # beta
                        # maximum R-square
           sim = 100,
                        # number of simulations
           type = "lm",  # model type
                        # normal distribution
           norm = TRUE,
                        # number of bins
           bin = 200,
           useed = 123,
                         # seed
           data = data_oster) # dataset
```

o_delta_rsq

Description

Estimates delta*s, i.e., the degree of selection on unobservables relative to observables (with respect to the treatment variable) that would be necessary to eliminate the result (following Oster 2019) over a range of maximum R-squares following Oster (2019).

Usage

```
o_delta_rsq(y, x, con, w = NULL, id = "none", time = "none", beta = 0,
type, data)
```

Arguments

У	Name of the dependent variable (as string).
х	Name of the independent treatment variable (i.e., variable of interest; as string).
con	Name of related control variables. Provided as string in the format: "w + z +".
W	weights (only for weighted estimations). Warning: For weighted panel models R can report different R-square than Stata, leading deviation between R and Stata results.
id	Name of the individual id variable (e.g. firm or farm; as string). Only applicable for fixed effect panel models.
time	Name of the time id variable (e.g. year or month; as string). Only applicable for fixed effect panel models.
beta	beta for which delta*s should be estimated (default is beta = 0).
type	Model type (either <i>lm</i> or <i>plm</i> ; as string).
data	Dataset.

Details

Estimates delta*s, i.e., the degree of selection on unobservables relative to observables (with respect to the treatment variable) that would be necessary to eliminate the result (following Oster 2019) over a range of maximum R-squares. The range of maximum R-squares starts from the R-square of the controlled model rounded up to the next 1/100 to 1. The function supports linear cross-sectional (see *lm* objects in R) and fixed effect panel (see *plm* objects in R) models.

Value

Returns tibble object, which includes delta*s over a range of maximum R-squares.

References

Oster, E. (2019). Unobservable Selection and Coefficient Stability: Theory and Evidence. Journal of Business & Economic Statistics, 37, 187-204.

o_delta_rsq_viz

Examples

o_delta_rsq_viz

Visualization of delta*s over a range of maximum R-squares

Description

Estimates and visualizes delta*s, i.e., the degree of selection on unobservables relative to observables (with respect to the treatment variable) that would be necessary to eliminate the result (following Oster 2019) over a range of maximum R-squares.

Usage

```
o_delta_rsq_viz(y, x, con, w = NULL, id = "none", time = "none", beta = 0,
type, data)
```

у	Name of the dependent variable (as string).
х	Name of the independent treatment variable (i.e., variable of interest; as string).
con	Name of related control variables. Provided as string in the format: " $w + z +$ ".
W	weights (only for weighted estimations). Warning: For weighted panel models R can report different R-square than Stata, leading deviation between R and Stata results.
id	Name of the individual id variable (e.g. firm or farm; as string). Only applicable for fixed effect panel models.
time	Name of the time id variable (e.g. year or month; as string). Only applicable for fixed effect panel models.
beta	beta for which delta*s should be estimated (default is beta = 0).
type	Model type (either <i>lm</i> or <i>plm</i> ; as string).
data	Dataset.

Estimates and visualizes delta*s, i.e., the degree of selection on unobservables relative to observables (with respect to the treatment variable) that would be necessary to eliminate the result (following Oster 2019) over a range of maximum R-squares. The range of maximum R-squares starts from the R-square of the controlled model rounded up to the next 1/100 to 1. The function supports linear cross-sectional (see *lm* objects in R) and fixed effect panel (see *plm* objects in R) models.

Value

Returns ggplot2 object, which depicts delta*s over a range of maximum R-squares.

References

Oster, E. (2019). Unobservable Selection and Coefficient Stability: Theory and Evidence. Journal of Business & Economic Statistics, 37, 187-204.

Examples

20

Index

o_beta, 2
o_beta_boot, 3
o_beta_boot_inf, 5
o_beta_boot_viz, 6
o_beta_rsq, 8
o_beta_rsq_viz, 10
o_delta, 11
o_delta_boot, 12
o_delta_boot_inf, 14
o_delta_boot_viz, 16
o_delta_rsq, 18
o_delta_rsq_viz, 19