Package ‘pumBayes’

May 30, 2025
Type Package

Title Bayesian Estimation of Probit Unfolding Models for Binary
Preference Data

Version 1.0.0
Maintainer Skylar Shi <dshi98@uw.edu>

Description Bayesian estimation and analysis methods for Probit Unfolding Mod-
els (PUMs), a novel class of scaling models designed for binary preference data. These mod-
els allow for both monotonic and non-monotonic response functions. The package sup-
ports Bayesian inference for both static and dynamic PUMs us-
ing Markov chain Monte Carlo (MCMC) algorithms with minimal or no tuning. Key functionali-
ties include posterior sampling, hyperparameter selection, data preprocessing, model fit evalua-
tion, and visualization. The methods are particularly suited to analyzing vot-
ing data, such as from the U.S. Congress or Supreme Court, but can also be applied in other con-
texts where non-monotonic responses are expected. For methodological de-
tails, see Shi et al. (2025) <doi:10.48550/arXiv.2504.00423>.

License GPL-3

Encoding UTF-8

RoxygenNote 7.3.1

Depends R (>=3.6.0)

Imports Rcpp

Suggests knitr, rmarkdown, pscl, MCMCpack

LinkingTo Rcpp, ReppArmadillo, ReppDist, mvtnorm, ReppTN

URL https://github.com/SkylarShiHub/pumBayes
BugReports https://github.com/SkylarShiHub/pumBayes/issues

Language en
NeedsCompilation yes

Author Skylar Shi [aut, cre] (ORCID: <https://orcid.org/0009-0001-2818-0299>),
Abel Rodriguez [aut] (ORCID: <https://orcid.org/0000-0001-5503-7394>),
Rayleigh Lei [aut] (ORCID: <https://orcid.org/0000-0002-0444-9708>),
Jonathan Olmsted [cph]

Repository CRAN
Date/Publication 2025-05-30 09:00:02 UTC

https://doi.org/10.48550/arXiv.2504.00423
https://github.com/SkylarShiHub/pumBayes
https://github.com/SkylarShiHub/pumBayes/issues
https://orcid.org/0009-0001-2818-0299
https://orcid.org/0000-0001-5503-7394
https://orcid.org/0000-0002-0444-9708

2 calc_waic
Contents
calc_waic e 2
dtnorm e 3
h116 . . . e e 4
item_char e 5
post_rank e e e e 6
predict_ideal L e 6
predict_irt e e e e 7
predict_pumo e e e e e e e 8
preprocess_rollcall 9
sample_pum_dynamic e e e e e 10
sample_pum_sStatic e e e e e 12
scotus.1937.2021 e e 13
tune_hyper e e e e 14
Index 15
calc_waic Calculate a block version of Watanabe-Akaike Information Criterion
(WAIC)
Description
This function is used to get the WAIC value when blocking members
Usage
calc_waic(vote_info, years_v = NULL, prob_array)
Arguments
vote_info A logical vote matrix (or a rollcall object) in which rows represent members and
columns represent issues. The entries should be FALSE ("No"), TRUE ("Yes"),
or NA (missing data).
years_v A vector representing the time period for each vote in the model. This is defultly
set as ‘NULL* for a static model.
prob_array An array of probabilities with three dimensions.
Value

The block WAIC value for a static PUM or a vector of WAIC by time for a dynamic PUM.

dtnorm 3

Examples

Long-running example
data(h116)
h116.c = preprocess_rollcall(h116)
hyperparams <- list(beta_mean = @, beta_var = 1, alpha_mean = c(0, 0),

alpha_scale = 5, delta_mean = c(-2, 10), delta_scale = sqrt(10))
control <- list(num_iter = 2, burn_in = @, keep_iter = 1, flip_rate = 0.1)
h116.c.pum <- sample_pum_static(h116.c, hyperparams,

control, pos_leg = grep("”"SCALISE"”, rownames(h116.c$votes)),
verbose = FALSE, pre_run = NULL, appended = FALSE)

h116.c.pum.predprob = predict_pum(h116.c, years_v = NULL, h116.c.pum)
h116.c.pum.waic = calc_waic(h116.c, prob_array = h116.c.pum.predprob)

dtnorm Density Function for Truncated Normal Distribution

Description

This function calculates the density of a truncated normal distribution at specified points.

Usage
dtnorm(x, mean = @, sd = 1, lower = -Inf, upper = Inf)
Arguments
X A numeric vector of quantiles at which to evaluate the density.
mean A numeric value specifying the mean of the normal distribution (default is 0).
sd A numeric value specifying the standard deviation of the normal distribution
(default is 1, must be positive).
lower A numeric value specifying the lower bound of truncation (default is -Inf).
upper A numeric value specifying the upper bound of truncation (default is Inf).
Value

A numeric vector of density values corresponding to the input ‘x‘. The values are normalized to

ensure the total probability within the truncation bounds equals 1. Values outside the truncation
bounds are set to 0.

Examples

dtnorm(c(-1, @, 1), mean = @, sd = 1, lower = -1, upper = 1)

4 hll16

h116 116th U.S. House of Representatives Roll Call Votes

Description

This dataset contains roll call voting records from the 116th U.S. House of Representatives. The
data was obtained using the ‘readKH()‘ function from Voteview, which reads roll call vote data from
the Voteview database.

Usage
data(h116)

Format

A list with 8 elements:

votes A ‘452 x 952° matrix of roll call votes, where each row represents a legislator and each
column represents a vote.

codes A list containing vote codes:

yea Codes representing *Yes’ votes.
nay Codes representing "No’ votes.
notInLegis Codes for members not in the legislature.
missing Codes for missing votes.
n Integer, number of legislators (452).
m Integer, number of votes (952).
legis.data A data frame (‘452 x 6°) containing legislator information:
state State abbreviation of each legislator.
icpsrState ICPSR state code.
cd Congressional district.
icpsrLegis ICPSR legislator ID.
party Party affiliation (*"D"¢, *"R"¢, *"I"“.).

partyCode Numerical party code (‘200° for Democrats, ‘100° for Republicans, 328° for
Independents.).

vote.data Currently NULL (reserved for additional vote metadata).
desc Description: “"116th U.S. House of Representatives" ‘.

source URL for the original data source.

Source

Jeffrey B. Lewis, Keith Poole, Howard Rosenthal, Adam Boche, Aaron Rudkin, and Luke Son-
net. Voteview: Congressional roll-call votes database. https://voteview.com/, 2024. Accessed:
2024-07-15.

https://voteview.com/

item_char 5

Examples

data(h116)
str(h116)

item_char Generate Data for Item Characteristic Curves

Description

This function calculates the data needed to plot the item characteristic curve for a specific issue
based on posterior samples.

Usage

item_char(vote_num, x = NULL, post_samples)

Arguments
vote_num The vote number of the issue to be reviewed. This refers to numbers in the
column names of the input vote matrix, not the clerk session vote number.
X A vector showing the range of beta in the x axis.

post_samples A list of posterior samples of parameters obtained from ‘sample_pum_static‘ in
‘pumBayes*.

Value

A data frame containing ‘beta_samples‘, mean probabilities (‘means‘), and confidence intervals
(‘ci_lower‘ and ‘ci_upper‘) for the input issue, which can be used to plot the item characteristic
curve.

Examples

data(h116)
h116.c = preprocess_rollcall(h116)
hyperparams <- list(beta_mean = @, beta_var = 1, alpha_mean = c(0, 0),

alpha_scale = 5, delta_mean = c(-2, 10), delta_scale = sqrt(10))
control <- list(num_iter = 2, burn_in = @, keep_iter = 1, flip_rate = 0.1)
h116.c.pum <- sample_pum_static(h116.c, hyperparams,

control, pos_leg = grep("SCALISE", rownames(h116.c$votes)),
verbose = FALSE, pre_run = NULL, appended = FALSE)

item_data <- item_char(vote_num = 5, x = c(-4,2), post_samples = h116.c.pum)

6 predict_ideal

post_rank Generate Quantile Ranks for Legislators

Description

This function calculates quantile ranks for each legislator based on posterior samples of beta pa-
rameters from MCMC. The function can handle any specified quantiles, such as median (0.5), and
is flexible to support other quantiles provided as input.

Usage

post_rank(beta, quantiles = c(0.5))

Arguments
beta A matrix of posterior samples of beta obtained from MCMC, with columns rep-
resenting legislators.
quantiles A numeric vector specifying the quantiles to be calculated for the ranks (default
is ‘c(0.5)° for median rank).
Value

A data frame containing the legislators’ names, party affiliations, states, and their ranks at each
specified quantile. If the median is included, it will be named ‘median‘ in the output. The output
data frame is sorted in ascending order based on the values in the median column.

Examples

data(h116)
h116.c = preprocess_rollcall(h116)
hyperparams <- list(beta_mean = @, beta_var = 1, alpha_mean = c(0, 0),

alpha_scale = 5, delta_mean = c(-2, 10), delta_scale = sqrt(10))
control <- list(num_iter = 2, burn_in = @, keep_iter = 1, flip_rate = 0.1)
h116.c.pum <- sample_pum_static(h116.c, hyperparams,

control, pos_leg = grep("SCALISE"”, rownames(h116.c$votes)),
verbose = FALSE, pre_run = NULL, appended = FALSE)

h116.c.beta.pum.rank = post_rank(beta = h116.c.pum$beta, quantiles = c(0.5))

predict_ideal Calculate Probabilities for the IDEAL Model

Description

This function computes the probability matrix for the IDEAL Model. Specifically, it calculates the
probabilities of voting "Yea" for each legislator (member), issue, (and time period) based on the
posterior samples of model parameters.

predict_irt 7

Usage

predict_ideal(vote_info, post_samples)

Arguments

vote_info A logical vote matrix (or a rollcall object) in which rows represent members and
columns represent issues. The entries should be FALSE ("No"), TRUE ("Yes"),
or NA (missing data).

post_samples Posterior samples obtained from function ’ideal’ in 'pscl’ package.
Value

An array of probabilities with three dimensions. The first one represents to members, the second
one refers to issues, and the third one refers to MCMC iterations.

Examples

Long-running example

data(h116)

h116.c = preprocess_rollcall(h116)

require(pscl)

cl = constrain.legis(h116.c, x = list("CLYBURN" = -1, "SCALISE" = 1),

d=1)

h116.c.ideal = ideal(h116.c, d = 1, priors = cl, startvals = cl,
maxiter = 2, thin = 1, burnin = 0,
store.item = TRUE)

h116.c.ideal.predprob = predict_ideal(h116.c, h116.c.ideal)

predict_irt Calculate Probabilities for Dynamic Item Response Theory Model

Description

This function computes the probability matrix for a dynamic item response theory (IRT) model.
Specifically, it calculates the probabilities of voting "Yea" for each legislator (member), issue, and
time period based on the posterior samples of model parameters.

Usage

predict_irt(vote_info, years_v, post_samples)

Arguments
vote_info A logical vote matrix where rows represent members and columns represent
issues. The entries should be FALSE ("No"), TRUE ("Yes"), or NA (missing
data).
years_v A vector representing the time period for each vote in the model.

post_samples =~ MCMC results obtained from ‘wnominate’ function in ‘wnominate’ package.

8 predict_pum

Value

An array of probabilities with three dimensions. The first one represents to members, the second
one refers to issues, and the third one refers to MCMC iterations.

Examples

Long-running example
data(scotus.1937.2021)
library(MCMCpack)
special_judge_ind = sapply(c("HLBlack"”, "PStewart"”, "WHRehnquist"),
function(name){grep(name, rownames(mgVotes))})
ed_v = rep(@, nrow(mgVotes))
EO_v = rep(1, nrow(mgVotes))
e0_v[special_judge_ind] = c(-2, 1, 3)
EQ_v[special_judge_ind] = c(10, 10, 10)
theta.start = rep(@, nrow(mgVotes))
indices = ¢c(2, 5, 8, 9, 12, 22, 23, 24, 25, 29, 30, 33, 36, 39,
42, 43, 44)
values = c(1, 1, -1, -2, -2, 1, -1, 1, 1, -1, 1, 3, 3, 3, 1, 1, -1)
theta.start[indices] = values
data(scotus.1937.2021)
scotus.MQ = MCMCdynamicIRT1d(mgVotes, mqTime, mcmc = 2,
burnin = @, thin = 1, tau2.start = 0.1,
theta.start = theta.start, a@ =0, A =1, b0 =0, B0 =1, co0 = -10,
do = -2, ed = e0_v, E0O = EO_v,
theta.constraints=1ist(CThomas = "+", SAAlito = "+", WIBrennan = "-",
WODouglas = "-", CEWhittaker = "+"))
scotus.MQ.predprob = predict_irt(mqVotes, mqTime, scotus.MQ)

predict_pum Calculate Probabilities for Probit Unfolding Models

Description

This function computes the probability matrix for both static and dynamic Probit Unfolding Models.
Specifically, it calculates the probabilities of voting "Yea" for each legislator (member), issue, (and
time period) based on the posterior samples of model parameters.

Usage

predict_pum(vote_info, years_v = NULL, post_samples)

Arguments

vote_info A logical vote matrix (or a rollcall object) in which rows represent members and
columns represent issues. The entries should be FALSE ("No"), TRUE ("Yes"),
or NA (missing data).

preprocess_rollcall 9

years_v A vector representing the time period for each vote in the model. This is defultly
set as ‘NULL* for a static model.

post_samples A list of posterior samples of parameters obtained from MCMC.

Value

An array of probabilities with three dimensions. The first one represents to members, the second
one refers to issues, and the third one refers to MCMC iterations.

Examples

Long-running example
data(h116)
h116.c = preprocess_rollcall(h116)
hyperparams <- list(beta_mean = @, beta_var = 1, alpha_mean = c(0, 0),

alpha_scale = 5, delta_mean = c(-2, 10), delta_scale = sqrt(10))
control <- list(num_iter = 2, burn_in = @, keep_iter = 1, flip_rate = 0.1)
h116.c.pum <- sample_pum_static(h116.c, hyperparams,

control, pos_leg = grep("SCALISE"”, rownames(h116.c$votes)),
verbose = FALSE, pre_run = NULL, appended = FALSE)

h116.c.pum.predprob = predict_pum(h116.c, years_v = NULL, h116.c.pum)

preprocess_rollcall Preprocess Roll Call Data

Description

This function is used to preprocess roll call data for analysis. It allows users to remove legisla-
tors, combine legislators with specified indices, exclude lopsided votes based on minority voting
proportions, and filter out legislators with excessive missing votes.

Usage

preprocess_rollcall(
X)
data_preprocess = list(leg_rm = NULL, combine_leg_index = NULL, combine_leg_party =
NULL, lop_leg = 0.6, lop_issue = 0)

Arguments

X A roll call object.
data_preprocess
A list of parameters for preprocessing data:

e ‘leg_rm‘ (default = NULL): A vector of indices specifying legislators to be
removed.

10 sample_pum_dynamic

e ‘combine_leg_index‘ (default = NULL): A list of vectors where each vector
specifies the indices of legislators to be combined.

* ‘combine_leg_party‘ (default = NULL): A vector specifying the party affil-
iations for combined legislators.

* ‘lop_leg® (default = 0.6): A threshold indicating the maximum allowable
proportion of missing votes for each legislator. Legislators with a propor-
tion of missing votes greater than this value are removed.

* ‘lop_issue‘ (default = 0): A threshold for the proportion of non-missing
votes on the minority side. Voting issues with a minority proportion lower
than this value are excluded.

Value

A roll call object that has been processed.

Examples

data(h116)
h116.c = preprocess_rollcall(h116)

sample_pum_dynamic Generate posterior samples from the dynamic probit unfolding model

Description

This function generates posterior samples for all parameters based on the dynamic probit unfolding
model.

Usage

sample_pum_dynamic(
vote_info,
years_v,
hyperparams,
control,
sign_refs,
verbose = FALSE,
pre_run = NULL,
appended = FALSE

)
Arguments
vote_info A logical vote matrix where rows represent members and columns represent
issues. The entries should be FALSE ("No"), TRUE ("Yes"), or NA (missing
data).

years_v A vector representing the time period for each vote in the model.

sample_pum_dynamic

hyperparams

control

sign_refs

verbose

pre_run

appended

Value

11

A list of hyperparameter values including: - ‘beta_mean‘: Prior mean of beta.
- ‘beta_var‘: Prior variance of beta. - ‘alpha_mean‘: A vector of 2 values for
the prior means of alphal and alpha2. - ‘alpha_scale‘: Scale parameter for
alphal and alpha2. - ‘delta_mean‘: A vector of 2 values for the prior means
of deltal and delta2. - ‘delta_scale‘: Scale parameter for deltal and delta2. -
‘tho_mean*‘: Prior mean of the autocorrelation parameter ‘rtho‘. - ‘rho_sigma*“:
Standard deviation of the prior for ‘rho‘.

A list specifying the MCMC configurations, including: - ‘num_iter‘: Total num-
ber of iterations. - ‘burn_in‘: The number of initial iterations to discard as part
of the burn-in period before retaining samples. - ‘keep_iter‘: Interval at which
samples are retained. - ‘flip_rate‘: Probability of directly flipping signs in the
M-H step, rather than resampling from the priors. - ‘sd_prop_rho‘: Proposal
standard deviation for ‘rho‘ in the Metropolis-Hastings step.

A list containing sign constraints, including: - ‘pos_inds‘: Indices of mem-
bers constrained to have positive values. - ‘neg_inds‘: Indices of members con-
strained to have negative values. - ‘pos_year_inds‘: List of years correspond-
ing to each ‘pos_ind‘. - ‘neg_year_inds‘: List of years corresponding to each
‘neg_ind‘.

Logical. If ‘TRUE®, prints progress and additional information during the sam-
pling process.

A list containing the output from a previous run of the function. If provided, the
last iteration of the previous run will be used as the initial point of the new run.
Defaults to ‘NULL".

Logical. If ‘TRUE’, the new samples will be appended to the samples from the
previous run. Defaults to ‘FALSE".

A list containing: - ‘beta‘: A data frame of posterior samples for beta. - ‘alphal‘: A data frame of
posterior samples for alphal. - ‘alpha2‘: A data frame of posterior samples for alpha2. - ‘deltal ‘: A
data frame of posterior samples for deltal. - ‘delta2‘: A data frame of posterior samples for delta2.
- ‘tho*: A data frame of posterior samples for rho.

Examples

Long-running example

data(scotus.1937.
hyperparams = list(alpha_mean = c(@, 0), alpha_scale = 5,

2021)

delta_mean = c(-2, 10), delta_scale
rho_mean = 0.9, rho_sigma = 0.04)

sqrt(10),

control = list(num_iter = 2, burn_in = 0, keep_iter =1, flip_rate = 0.1, sd_prop_rho =0.1)
sign_refs = list(pos_inds = c(39, 5), neg_inds = c(12, 29),

pos_year_inds = list(1:31, 1), neg_year_inds = list(1:29, 1:24))

scotus.pum = sample_pum_dynamic(mqVotes, mgTime, hyperparams, control, sign_refs,

verbose = FALSE, pre_run = NULL, appended = FALSE)

12

sample_pum_static

sample_pum_static

Generate posterior samples from the static probit unfolding model

Description

This function generates posterior samples of all parameters based on the static probit unfolding

model.
Usage
sample_pum_static(
vote_info,
hyperparams,
control,
pos_leg = 0,

verbose = FALSE,
pre_run = NULL,
appended = FALSE

Arguments

vote_info

hyperparams

control

pos_leg

verbose

pre_run

appended

A logical vote matrix (or a rollcall object) in which rows represent members and
columns represent issues.

A list of hyperparameter values: - ‘beta_mean*‘: Prior mean for beta. - ‘beta_var*:
Variance of beta. - ‘alpha_mean‘: A vector of two components representing the
prior means of ‘alphal‘ and ‘alpha2‘. - ‘alpha_scale‘: Scale parameter for ‘al-
phal‘ and ‘alpha2‘. - ‘delta_mean‘: A vector of two components representing
the prior means of ‘deltal‘ and ‘delta2‘. - ‘delta_scale‘: Scale parameter for
‘deltal * and ‘delta2’.

A list of MCMC configurations: - ‘num_iter‘: Total number of iterations. It is
recommended to set this to at least 30,000 to ensure reliable results. - ‘burn_in‘:
The number of initial iterations to discard as part of the burn-in period before
retaining samples. - ‘keep_iter*: Interval at which iterations are kept for poste-
rior samples. - ‘flip_rate: Probability of directly flipping signs in the M-H step,
rather than resampling from the priors.

Name of the legislator whose position is kept positive.

Logical. If “TRUE", prints progress and additional information during the sam-
pling process.

A list containing the output from a previous run of the function. If provided, the
last iteration of the previous run will be used as the initial point of the new run.
Defaults to ‘NULL".

Logical. If ‘TRUE", the new samples will be appended to the samples from the
previous run. Defaults to ‘FALSE".

scotus.1937.2021 13

Value

A list primarily containing: - ‘beta‘: A matrix of posterior samples for ‘beta‘. - ‘alphal‘: A matrix
of posterior samples for ‘alphal ‘. - ‘alpha2‘: A matrix of posterior samples for ‘alpha2‘. - ‘deltal‘:
A matrix of posterior samples for ‘deltal‘. - ‘delta2‘: A matrix of posterior samples for ‘delta2‘. -
‘vote_info*: The input vote object.

Examples

Long-running example
data(h116)
h116.c = preprocess_rollcall(h116)
hyperparams <- list(beta_mean = @, beta_var = 1, alpha_mean = c(0, 0),

alpha_scale = 5, delta_mean = c(-2, 10), delta_scale = sqrt(10))
control <- list(num_iter = 2, burn_in = @, keep_iter = 1, flip_rate = 0.1)
h116.c.pum <- sample_pum_static(h116.c, hyperparams,

control, pos_leg = grep("”"SCALISE"”, rownames(h116.c$votes)),
verbose = FALSE, pre_run = NULL, appended = FALSE)

scotus.1937.2021 U.S. Supreme Court Voting Data (1937-2021)

Description
This dataset contains voting records from the U.S. Supreme Court between 1937 and 2021. Loading
‘data(scotus.1937.2021)° will load the following two independent objects into the environment:
Usage
data(scotus.1937.2021)

Format
The dataset consists of the following two objects:

mqVotes A ‘48 x 6108° matrix, where each row represents a judge and each column represents a
case. Entries are:

e ‘1° (‘TRUE®): The judge voted to reverse the lower court decision.
* ‘0° (‘FALSE®): The judge voted to uphold the lower court decision.
* ‘NA‘: The judge did not vote on the case.

mqTime A numeric vector of length ‘6108, indicating the time period associated with each case.

Source

The data were obtained from the Martin-Quinn Scores Database, maintained by Washington Uni-
versity in St. Louis. The dataset can be accessed and downloaded from http://mgscores.wustl.
edu/replication.php.

http://mqscores.wustl.edu/replication.php
http://mqscores.wustl.edu/replication.php

14 tune_hyper

Examples

data(scotus.1937.2021)
str(mgVotes)
str(mgTime)

tune_hyper Generate Probability Samples for Voting "Yes"

Description

This function generates probability samples for Voting "Yes". It uses predefined hyperparameters
and simulates data based on the specified number of members (‘n_leg‘) and issues (‘n_issue®).

Usage

tune_hyper (hyperparams = hyperparams, n_leg, n_issue)

Arguments
hyperparams A list of hyperparameter values: - ‘beta_mean‘: The prior mean of the ‘beta’
parameter, representing legislator positions. - ‘beta_var‘: The prior variance of
‘beta‘. - ‘alpha_mean‘: A vector of length two, specifying the prior means of
the item discrimination parameters, ‘alphal ‘ and ‘alpha2‘. - ‘alpha_scale‘: The
scale parameter for ‘alphal‘ and ‘alpha2‘. - ‘delta_mean‘: A vector of length
two, indicating the prior means of the item difficulty parameters, ‘deltal‘ and
‘delta2°. - ‘delta_scale‘: The scale parameter for ‘deltal “ and ‘delta2‘.
n_leg Integer, representing the number of legislators (members) to be simulated.
n_issue Integer, indicating the number of issues to be simulated.
Value

A numeric vector containing the simulated probabilities of voting "Yes" for legislators across issues.

Examples

hyperparams = list(beta_mean = @, beta_var = 1, alpha_mean = c(0, @),
alpha_scale = 5, delta_mean = c(-2, 10),
delta_scale = sqrt(10))

theta = tune_hyper(hyperparams, n_leg = 10, n_issue = 10)

Index

x datasets
h116, 4
scotus.1937.2021, 13

calc_waic, 2
dtnorm, 3
h116, 4
item_char, 5

mgTime (scotus.1937.2021), 13
mqVotes (scotus.1937.2021), 13

post_rank, 6
predict_ideal, 6
predict_irt,7
predict_pum, 8
preprocess_rollcall, 9

sample_pum_dynamic, 10
sample_pum_static, 12
scotus.1937.2021, 13

tune_hyper, 14

15

	calc_waic
	dtnorm
	h116
	item_char
	post_rank
	predict_ideal
	predict_irt
	predict_pum
	preprocess_rollcall
	sample_pum_dynamic
	sample_pum_static
	scotus.1937.2021
	tune_hyper
	Index

