
Package ‘pmml’
October 14, 2022

Type Package

Title Generate PMML for Various Models

Version 2.5.2

Depends XML

Suggests ada, amap, arules, caret, clue, data.table, forecast, gbm,
glmnet, Matrix, neighbr, nnet, rpart, randomForest, rattle,
kernlab, e1071, testthat, survival, xgboost, knitr, rmarkdown,
covr, tibble

Imports methods, stats, utils, stringr

License GPL-3 | file LICENSE

Description The Predictive Model Markup Language (PMML) is an XML-based language which pro-
vides a way for applications to define machine learning, statistical and data mining mod-
els and to share models between PMML compliant applications. More informa-
tion about the PMML industry standard and the Data Min-
ing Group can be found at <http://dmg.org/>. The generated PMML can be im-
ported into any PMML consuming application, such as Zementis Predictive Analytics prod-
ucts. The package isofor (used for anomaly detection) can be installed with dev-
tools::install_github(``gravesee/isofor'').

URL https://open-source.softwareag.com/r-pmml/,

https://github.com/SoftwareAG/r-pmml,

https://www.softwareag.com/corporate/products/az/zementis/default.html

BugReports https://github.com/SoftwareAG/r-pmml/issues

NeedsCompilation no

RoxygenNote 7.1.2

VignetteBuilder knitr

Encoding UTF-8

Author Dmitriy Bolotov [aut, cre],
Tridivesh Jena [aut],
Graham Williams [aut],
Wen-Ching Lin [aut],

1

http://dmg.org/
https://open-source.softwareag.com/r-pmml/
https://github.com/SoftwareAG/r-pmml
https://www.softwareag.com/corporate/products/az/zementis/default.html
https://github.com/SoftwareAG/r-pmml/issues

2 R topics documented:

Michael Hahsler [aut],
Hemant Ishwaran [aut],
Udaya B. Kogalur [aut],
Rajarshi Guha [aut],
Software AG [cph]

Maintainer Dmitriy Bolotov <dmitriy.bolotov@softwareag.com>

Repository CRAN

Date/Publication 2022-03-04 11:50:05 UTC

R topics documented:
add_attributes . 3
add_data_field_attributes . 4
add_data_field_children . 7
add_mining_field_attributes . 8
add_output_field . 10
audit . 12
file_to_xml_node . 13
function_to_pmml . 14
houseVotes84 . 16
make_intervals . 17
make_output_nodes . 18
make_values . 19
pmml . 20
pmml.ada . 22
pmml.ARIMA . 24
pmml.coxph . 26
pmml.cv.glmnet . 27
pmml.gbm . 29
pmml.glm . 31
pmml.hclust . 32
pmml.iForest . 34
pmml.kmeans . 36
pmml.ksvm . 38
pmml.lm . 39
pmml.multinom . 40
pmml.naiveBayes . 42
pmml.neighbr . 43
pmml.nnet . 46
pmml.randomForest . 47
pmml.rpart . 49
pmml.rules . 50
pmml.svm . 51
pmml.xgb.Booster . 54
rename_wrap_var . 57
save_pmml . 58
xform_discretize . 59

add_attributes 3

xform_function . 63
xform_map . 64
xform_min_max . 67
xform_norm_discrete . 69
xform_wrap . 71
xform_z_score . 72

Index 75

add_attributes Add attribute values to an existing element in a given PMML file.

Description

Add attribute values to an existing element in a given PMML file.

Usage

add_attributes(
xml_model = NULL,
xpath = NULL,
attributes = NULL,
namespace = "4_4",
...

)

Arguments

xml_model The PMML model in a XML node format. If the model is a text file, it should be
converted to an XML node, for example, using the file_to_xml_node function.

xpath The XPath to the element to which the attributes are to be added.

attributes The attributes to be added to the data fields. The user should make sure that the
attributes being added are allowed in the PMML schema.

namespace The namespace of the PMML model. This is frequently also the PMML version
of the model.

... Further arguments passed to or from other methods.

Details

Add attributes to an arbitrary XML element. This is an experimental function designed to be more
general than the ’add_mining_field_attributes’ and ’add_data_field_attributes’ functions.

The attribute information can be provided as a vector. Multiple attribute names and values can be
passes as vector elements to enable inserting multiple attributes. However, this function overwrites
any pre-existing attribute values, so it must be used with care. This behavior is by design as this
feature is meant to help an user add new defined attribute values at different times. The XPath has
to include the namespace as shown in the examples.

4 add_data_field_attributes

Value

An object of class XMLNode as that defined by the XML package. This represents the top level, or
root node, of the XML document and is of type PMML. It can be written to file with saveXML.

Author(s)

Tridivesh Jena

Examples

Make a sample model:
fit <- lm(Sepal.Length ~ ., data = iris[, -5])
fit_pmml <- pmml(fit)

Add arbitrary attributes to the 1st 'NumericPredictor' element. The
attributes are for demostration only (they are not allowed under
the PMML schema). The command assumes the default namespace.
fit_pmml_2 <- add_attributes(fit_pmml, "/p:PMML/descendant::p:NumericPredictor[1]",

attributes = c(a = 1, b = "b")
)

Add attributes to the NumericPredictor element which has
'Petal.Length' as the 'name' attribute:
fit_pmml_3 <- add_attributes(fit_pmml,

"/p:PMML/descendant::p:NumericPredictor[@name='Petal.Length']",
attributes = c(a = 1, b = "b")

)

3 NumericElements exist which have '1' as the 'exponent' attribute.
Add new attributes to the 3rd one:
fit_pmml_4 <- add_attributes(fit_pmml,

"/p:PMML/descendant::p:NumericPredictor[@exponent='1'][3]",
attributes = c(a = 1, b = "b")

)

Add attributes to the 1st element whose 'name' attribute contains
'Length':
fit_pmml_5 <- add_attributes(fit_pmml,

"/p:PMML/descendant::p:NumericPredictor[contains(@name,'Length')]",
attributes = c(a = 1, b = "b")

)

add_data_field_attributes

Add attribute values to an existing DataField element in a given
PMML file

Description

Add attribute values to an existing DataField element in a given PMML file

add_data_field_attributes 5

Usage

add_data_field_attributes(
xml_model = NULL,
attributes = NULL,
field = NULL,
namespace = "4_4",
...

)

Arguments

xml_model The PMML model in a XML node format. If the model is a text file, it should be
converted to an XML node, for example, using the file_to_xml_node function.

attributes The attributes to be added to the data fields. The user should make sure that the
attributes being added are allowed in the PMML schema.

field The field to which the attributes are to be added. This is used when the attributes
are a vector of name-value pairs, intended for this one field.

namespace The namespace of the PMML model. This is frequently also the PMML version
of the model.

... Further arguments passed to or from other methods.

Details

The PMML schema allows a DataField element to have various attributes, which, although useful,
may not always be present in a PMML model. This function makes it possible to add such attributes
to DataFields of an existing PMML file.

The attribute information can be provided as a dataframe or a vector. Each row of the data frame
corresponds to an attribute name and each column corresponding to a variable name. This way one
can add as many attributes to as many variables as one wants in one step. A more convenient method
to add multiple attributes to one field might be to give the attribute name and values as a vector. This
function may be used multiple times to add new attribute values step-by-step. However this function
overwrites any pre-existing attribute values, so it must be used with care. This behavior is by design
as this feature is meant to help an user add new defined attribute values at different times. For
example, one may use this to modify the display name of a field at different times.

Value

An object of class XMLNode as that defined by the XML package. This represents the top level, or
root node, of the XML document and is of type PMML. It can be written to file with saveXML.

Author(s)

Tridivesh Jena

6 add_data_field_attributes

Examples

Make a sample model:
fit <- lm(Sepal.Length ~ ., data = iris[, -5])
fit_pmml <- pmml(fit)

The resulting model has mining fields with no information besides
fieldName, dataType and optype. This object is already an xml
node (not an external text file), so there is no need to convert
it to an xml node object.

Create data frame with attribute information:

attributes <- data.frame(c("FlowerWidth", 1), c("FlowerLength", 0),
stringsAsFactors = FALSE

)
rownames(attributes) <- c("displayName", "isCyclic")
colnames(attributes) <- c("Sepal.Width", "Petal.Length")

Although not needed in this first try, necessary to easily add
new values later. Removes values as factors so that new values
added later are not evaluated as factor values and thus rejected
as invalid.
attributes[] <- lapply(attributes, as.character)

fit_pmml_2 <- add_data_field_attributes(fit_pmml,
attributes,
namespace = "4_4"

)

Alternative method to add attributes to a single field,
"Sepal.Width":
fit_pmml_3 <- add_data_field_attributes(

fit_pmml, c(displayName = "FlowerWidth", isCyclic = 1),
"Sepal.Width"

)

mi <- make_intervals(
list("openClosed", "closedClosed", "closedOpen"),
list(NULL, 1, 2), list(1, 2, NULL)

)
mv <- make_values(

list("A", "B", "C"), list(NULL, NULL, NULL),
list("valid", NULL, "invalid")

)
fit_pmml_4 <- add_data_field_children(fit_pmml,

field = "Sepal.Length",
interval = mi, values = mv

)

add_data_field_children 7

add_data_field_children

Add ’Interval’ and ’Value’ child elements to a given DataField element
in a given PMML file.

Description

Add ’Interval’ and ’Value’ child elements to a given DataField element in a given PMML file.

Usage

add_data_field_children(
xml_model = NULL,
field = NULL,
intervals = NULL,
values = NULL,
namespace = "4_4",
...

)

Arguments

xml_model The PMML model in a XML node format. If the model is a text file, it should be
converted to an XML node, for example, using the file_to_xml_node function.

field The field to which the attributes are to be added. This is used when the attributes
are a vector of name-value pairs, intended for this one field.

intervals The ’Interval’ elements given as a list

values The ’Value’ elements given as a list.

namespace The namespace of the PMML model. This is frequently also the PMML version
of the model.

... Further arguments passed to or from other methods.

Details

The PMML format allows a DataField element to have ’Interval’ and ’Value’ child elements which
although useful, may not always be present in a PMML model. This function allows one to take an
existing PMML file and add these elements to the DataFields.

The ’Interval’ elements or the ’Value’ elements can be typed in, but more conveniently created by
using the helper functions ’make_intervals’ and ’MakeValues’. This function can then add these
extra information to the PMML.

Value

An object of class XMLNode as that defined by the XML package. This represents the top level, or
root node, of the XML document and is of type PMML. It can be written to file with saveXML.

8 add_mining_field_attributes

Author(s)

Tridivesh Jena

Examples

Make a sample model:
fit <- lm(Sepal.Length ~ ., data = iris[, -5])
fit_pmml <- pmml(fit)

The resulting model has data fields but with no 'Interval' or Value'
elements. This object is already an xml node (not an external text
file), so there is no need to convert it to an xml node object.

Add an 'Interval' element node by typing it in
fit_pmml_2 <- add_data_field_children(fit_pmml,

field = "Sepal.Length",
intervals = list(newXMLNode("Interval",
attrs = c(closure = "openClosed", rightMargin = 3)

))
)

Use helper functions to create list of 'Interval' and 'Value'
elements. We define the 3 Intervals as ,1] (1,2) and [2,
mi <- make_intervals(

list("openClosed", "openOpen", "closedOpen"),
list(NULL, 1, 2), list(1, 2, NULL)

)

Define 3 values, none with a 'displayValue' attribute and 1 value
defined as 'invalid'. The 2nd one is 'valid' by default.
mv <- make_values(

list(1.1, 2.2, 3.3), list(NULL, NULL, NULL),
list("valid", NULL, "invalid")

)

As an example, apply these to the Sepal.Length field:
fit_pmml_3 <- add_data_field_children(fit_pmml, field = "Sepal.Length", intervals = mi, values = mv)

Only defined 'Interval's:
fit_pmml_3 <- add_data_field_children(fit_pmml, field = "Sepal.Length", intervals = mi)

add_mining_field_attributes

Add attribute values to an existing MiningField element in a given
PMML file.

Description

Add attribute values to an existing MiningField element in a given PMML file.

add_mining_field_attributes 9

Usage

add_mining_field_attributes(
xml_model = NULL,
attributes = NULL,
namespace = "4_4",
...

)

Arguments

xml_model The PMML model in a XML node format. If the model is a text file, it should be
converted to an XML node, for example, using the file_to_xml_node function.

attributes The attributes to be added to the mining fields. The user should make sure that
the attributes being added are allowed in the PMML schema.

namespace The namespace of the PMML model. This is frequently also the PMML version
of the model.

... Further arguments passed to or from other methods.

Details

The PMML format allows a MiningField element to have attributes ’usageType’, ’missingValueRe-
placement’ and ’invalidValueTreatment’ which although useful, may not always be present in a
PMML model. This function allows one to take an existing PMML file and add these attributes to
the MiningFields.

The attribute information should be provided as a dataframe; each row corresponding to an attribute
name and each column corresponding to a variable name. This way one can add as many attributes
to as many variables as one wants in one step. On the other extreme, a one-by-one data frame may
be used to add one new attribute to one variable. This function may be used multiple times to add
new attribute values step-by-step. This function overwrites any pre-existing attribute values, so it
must be used with care. However, this is by design as this feature is meant to help an user defined
new attribute values at different times. For example, one may use this to impute missing values in a
model at different times.

Value

An object of class XMLNode as that defined by the XML package. This represents the top level, or
root node, of the XML document and is of type PMML. It can be written to file with saveXML.

Author(s)

Tridivesh Jena

Examples

Make a sample model
fit <- lm(Sepal.Length ~ ., data = iris[, -5])
fit_pmml <- pmml(fit)

10 add_output_field

The resulting model has mining fields with no information
besides fieldName, dataType and optype. This object is
already an xml node (not an external text file), so there
is no need to convert it to an xml node object.

Create data frame with attribute information:
attributes <- data.frame(

c("active", 1.1, "asIs"),
c("active", 2.2, "asIs"),
c("active", NA, "asMissing"),
stringsAsFactors = TRUE

)
rownames(attributes) <- c(

"usageType", "missingValueReplacement",
"invalidValueTreatment"

)
colnames(attributes) <- c(

"Sepal.Width", "Petal.Length",
"Petal.Width"

)

Although not needed in this first try, necessary to easily
add new values later:
for (k in 1:ncol(attributes)) {

attributes[[k]] <- as.character(attributes[[k]])
}

fit_pmml <- add_mining_field_attributes(fit_pmml, attributes, namespace = "4_4")

add_output_field Add Output nodes to a PMML object.

Description

Add Output nodes to a PMML object.

Usage

add_output_field(
xml_model = NULL,
outputNodes = NULL,
at = "End",
xformText = NULL,
nodeName = NULL,
attributes = NULL,
whichOutput = 1,
namespace = "4_4"

)

add_output_field 11

Arguments

xml_model The PMML model to which the OutputField elements are to be added

outputNodes The Output nodes to be added. These may be created using the ’make_output_nodes’
helper function

at Given an Output element, the 1 based index after which the given Output child
element should be inserted at

xformText Post-processing information to be included in the OutputField element. This
expression will be processed by the function_to_pmml function

nodeName The name of the element to be added

attributes The attributes to be added

whichOutput The index of the Output element

namespace The namespace of the PMML model

Details

This function is meant to add any post-processing information to an existing model via the Output-
Field element. One can also use this to tell the PMML model to output other values not automati-
cally added to the model output. The first method is to use the ’make_output_nodes’ helper function
to make a list of output elements to be added. ’whichOutput’ lets the function know which of the
Output elements we want to work with; there may be more than one in a multiple model file. One
can then add those elements there, at the desired index given by the ’at’ parameter; the elements
are inserted after the OutputField element at the ’at’ index. In other words, find the ’whichOutput’
Output element, add the ’outputNodes’ child elements (which should be OutputField nodes) at the
’at’ position in the child nodes. This function can also be used with the ’nodeName’ and ’attributes’
to add the list of attributes to an OutputField element with name ’nodeName’ element using the
’xml_model’, ’outputNodes’ and ’at’ parameters. Finally, one can use this to add the transfor-
mation expression given by the ’xformText’ parameter to the node with name ’nodeName’. The
string given via ’xformText’ is converted to an XML expression similarly to the function_to_pmml
function. In other words, find the OutputField node with the name ’nodeName’ and add the list of
attributes given with ’attributes’ and also, add the child transformations given in the ’xformText’
parameter.

Value

Output node with the OutputField elements inserted.

Author(s)

Tridivesh Jena

Examples

Load the standard iris dataset
data(iris)

Create a linear model and convert it to PMML
mod <- lm(Sepal.Length ~ ., iris)

12 audit

pmod <- pmml(mod)

Create additional output nodes
onodes0 <- make_output_nodes(

name = list("OutputField", "OutputField"),
attributes = list(list(
name = "dbl",
optype = "continuous"

), NULL),
expression = list("ln(x)", "ln(x/(1-x))")

)
onodes2 <- make_output_nodes(

name = list("OutputField", "OutputField"),
attributes = list(

list(
name = "F1",
dataType = "double", optype = "continuous"

),
list(name = "F2")

)
)

Create new pmml objects with the output nodes appended
pmod2 <- add_output_field(

xml_model = pmod, outputNodes = onodes2, at = "End",
xformText = NULL, nodeName = NULL, attributes = NULL,
whichOutput = 1

)
pmod2 <- add_output_field(

xml_model = pmod, outputNodes = onodes0, at = "End",
xformText = NULL, nodeName = NULL,
attributes = NULL, whichOutput = 1

)

Create nodes with attributes and transformations
pmod3 <- add_output_field(xml_model = pmod2, outputNodes = onodes2, at = 2)
pmod4 <- add_output_field(

xml_model = pmod2, xformText = list("exp(x) && !x"),
nodeName = "Predicted_Sepal.Length"

)

att <- list(datype = "dbl", optpe = "dsc")
pmod5 <- add_output_field(

xml_model = pmod2, nodeName = "Predicted_Sepal.Length",
attributes = att

)

audit Audit: artificially constructed dataset

file_to_xml_node 13

Description

This is an artificial dataset consisting of fictional clients who have been audited, perhaps for tax
refund compliance. For each case an outcome is recorded (whether the taxpayer’s claims had to be
adjusted or not) and any amount of adjustment that resulted is also recorded.

Format

A data frame containing:

Age Numeric
Employment Categorical string with 7 levels
Education Categorical string with 16 levels
Marital Categorical string with 6 levels
Occupation Categorical string with 14 levels
Income Numeric
Sex Categorical string with 2 levels
Deductions Numeric
Hours Numeric
Accounts Categorical string with 32 levels
Adjustment Numeric
Adjusted Numeric value 0 or 1

References

• Togaware rattle package : Audit dataset

• DMG description of the Audit dataset

Examples

data(audit, package = "pmml")

file_to_xml_node Read in a file and parse it into an object of type XMLNode.

Description

Read in a file and parse it into an object of type XMLNode.

Usage

file_to_xml_node(file)

Arguments

file The external file to be read in. This file can be any file in PMML format, regard-
less of the source or model type.

http://dmg.org/pmml_examples/index.html

14 function_to_pmml

Details

Read in an external file and convert it into an XMLNode to be used subsequently by other R func-
tions.

This format is the one that will be obtained when a model is constructed in R and output in PMML
format.

This function is mainly meant to be used to read in external files instead of depending on models
saved in R. As an example, the pmml package requires as input an object of type XMLNode before
its functions can be applied. Function ’file_to_xml_node’ can be used to read in an existing PMML
file, convert it to an XML node and then make it available for use by any of the pmml functions.

Value

An object of class XMLNode as that defined by the XML package. This represents the top level, or
root node, of the XML document and is of type PMML. It can be written to file with saveXML.

Author(s)

Tridivesh Jena

Examples

Not run:
Define some transformations:
iris_box <- xform_wrap(iris)
iris_box <- xform_z_score(iris_box, xform_info = "column1->d1")
iris_box <- xform_z_score(iris_box, xform_info = "column2->d2")

Make a LocalTransformations element and save it to an external file:
pmml_trans <- pmml(NULL, transforms = iris_box)
write(toString(pmml_trans), file = "xform_iris.pmml")

Later, we may need to read in the PMML model into R
'lt' below is now a XML Node, as opposed to a string:
lt <- file_to_xml_node("xform_iris.pmml")

End(Not run)

function_to_pmml Convert an R expression to PMML.

Description

Convert an R expression to PMML.

Usage

function_to_pmml(expr)

function_to_pmml 15

Arguments

expr An R expression enclosed in quotes.

Details

As long as the expression passed to the function is a valid R expression (e.g., no unbalanced paren-
thesis), it can contain arbitrary function names not defined in R. Variables in the expression passed
to ‘xform_function‘ are always assumed to be fields, and not substituted. That is, even if ‘x‘ has a
value in the R environment, the resulting expression will still use ‘x‘.

An expression such as ‘foo(x)‘ is treated as a function ‘foo‘ with argument ‘x‘. Consequently, pass-
ing in an R vector ‘c(1,2,3)‘ to ‘function_to_pmml()‘ will produce PMML where ‘c‘ is a function
and ‘1,2,3‘ are the arguments.

An expression starting with ’-’ or ’+’ (for example, "-3" or "-(a+b)") will be treated as if there is a
0 before the initial ’-’ or ’+’ sign. This makes it possible to represent expressions that start with a
sign, since PMML’s ’-’ and ’+’ functions require two arguments. The resulting PMML node will
have a constant 0 as a child.

Value

PMML version of the input expression

Author(s)

Dmitriy Bolotov

Examples

Operator precedence and parenthesis
func_pmml <- function_to_pmml("1 + 3/5 - (4 * 2)")

Nested arbitrary functions
func_pmml <- function_to_pmml("foo(bar(x)) - bar(foo(y-z))")

If-else expression
func_pmml <- function_to_pmml("if (x==3) { 3 } else { 0 }")

If-else with boolean output
func_pmml <- function_to_pmml("if (x==3) { TRUE } else { FALSE }")

Function with string argument types
func_pmml <- function_to_pmml("colors('red','green','blue')")

Sign in front of expression
func_pmml <- function_to_pmml("-(x/y)")

16 houseVotes84

houseVotes84 Modified 1984 United States Congressional Voting Records Database

Description

This data set includes votes for each of the U.S. House of Representatives Congressmen on the 16
key votes identified by the CQA. The CQA lists nine different types of votes: voted for, paired
for, and announced for (these three simplified to yea), voted against, paired against, and announced
against (these three simplified to nay), voted present, voted present to avoid conflict of interest, and
did not vote or otherwise make a position known (these three simplified to an unknown disposition).
Originally containing a binomial variable "class" and 16 other binary variables, those 16 variables
have been renamed to simply "V1","V2",...,"V16".

Format

A data frame containing:

Class Boolean variable
V1 Boolean variable
V2 Boolean variable
V3 Boolean variable
V4 Boolean variable
V5 Boolean variable
V6 Boolean variable
V7 Boolean variable
V8 Boolean variable
V9 Boolean variable
V10 Boolean variable
V11 Boolean variable
V12 Boolean variable
V13 Boolean variable
V14 Boolean variable
V15 Boolean variable
V16 Boolean variable

References

UCI Machine Learning Repository

Examples

data(houseVotes84, package = "pmml")

http://archive.ics.uci.edu/ml/datasets/Congressional+Voting+Records

make_intervals 17

make_intervals Create Interval elements, most likely to add to a DataDictionary ele-
ment.

Description

Create Interval elements, most likely to add to a DataDictionary element.

Usage

make_intervals(
closure = NULL,
leftMargin = NULL,
rightMargin = NULL,
namespace = "4_4"

)

Arguments

closure The ’closure’ attribute of each ’Interval’ element to be created in order.

leftMargin The ’leftMargin’ attribute of each ’Interval’ element to be created in order.

rightMargin The ’rightMargin’ attribute of each ’Interval’ element to be created in order.

namespace The namespace of the PMML model

Details

The ’Interval’ element allows 3 attributes, all of which may be defined in the ’make_intervals’
function. The value of these attributes should be provided as a list. Thus the elements of the
’leftMargin’ for example define the value of that attribute for each ’Interval’ element in order.

Value

PMML Intervals elements.

Author(s)

Tridivesh Jena

See Also

make_values to make Values child elements, add_data_field_children to add these xml frag-
ments to the DataDictionary PMML element.

18 make_output_nodes

Examples

make 3 Interval elements
we define the 3 Intervals as ,1] (1,2) and [2,
mi <- make_intervals(

list("openClosed", "openOpen", "closedOpen"),
list(NULL, 1, 2), list(1, 2, NULL)

)

make_output_nodes Add Output nodes to a PMML object.

Description

Add Output nodes to a PMML object.

Usage

make_output_nodes(
name = "OutputField",
attributes = NULL,
expression = NULL,
namespace = "4_4"

)

Arguments

name The name of the element to be created.

attributes The node attributes to be added.

expression Post-processing information to be included in the element. This expression will
be processed by function_to_pmml.

namespace The namespace of the PMML model.

Details

Create a list of nodes with names 'name', attributes 'attributes' and child elements 'expression'.
'expression' is a string converted to XML similar to function_to_pmml.

Meant to create OutputField elements, ’expressions’ can be used to add post-processing transfor-
mations to a model. To create multiple such nodes, all the parameters must be given as lists of equal
length.

Value

List of nodes

Author(s)

Tridivesh Jena

make_values 19

Examples

Make two nodes, one with attributes
two_nodes <- make_output_nodes(

name = list("OutputField", "OutputField"),
attributes = list(list(name = "dbl", optype = "continuous"), NULL),
expression = list("ln(x)", "ln(x/(1-x))")

)

make_values Create Values element, most likely to add to a DataDictionary element.

Description

Create Values element, most likely to add to a DataDictionary element.

Usage

make_values(
value = NULL,
displayValue = NULL,
property = NULL,
namespace = "4_4"

)

Arguments

value The ’value’ attribute of each ’Value’ element to be created in order.

displayValue The ’displayValue’ attribute of each ’Value’ element to be created in order.

property The ’property’ attribute of each ’Value’ element to be created in order.

namespace The namespace of the PMML model

Details

This function is used the same way as the make_intervals function. If certain attributes for an
element should not be included, they should be input in the list as NULL.

Value

PMML Values elements.

Author(s)

Tridivesh Jena

See Also

make_intervals to make Interval child elements, add_data_field_children to add these xml
fragments to the DataDictionary PMML element.

20 pmml

Examples

define 3 values, none with a 'displayValue' attribute and 1 value
defined as 'invalid'. The 2nd one is 'valid' by default.
mv <- make_values(

list(1.1, 2.2, 3.3), list(NULL, NULL, NULL),
list("valid", NULL, "invalid")

)

pmml Generate the PMML representation for R objects.

Description

pmml is a generic function implementing S3 methods used to produce the PMML (Predictive Model
Markup Language) representation of an R model. The resulting PMML file can then be imported
into other systems that accept PMML.

Usage

pmml(
model = NULL,
model_name = "R_Model",
app_name = "SoftwareAG PMML Generator",
description = NULL,
copyright = NULL,
model_version = NULL,
transforms = NULL,
...

)

Arguments

model An object to be converted to PMML.

model_name A name to be given to the PMML model.

app_name The name of the application that generated the PMML.

description A descriptive text for the Header element of the PMML.

copyright The copyright notice for the model.

model_version A string specifying the model version.

transforms Data transformations.

... Further arguments passed to or from other methods.

pmml 21

Details

The data transformation functions previously available in the separate pmmlTransformations pack-
age have been merged into pmml starting with version 2.0.0.

This function can also be used to output variable transformations in PMML format. In particular, it
can be used as a transformations generator. Various transformation operations can be implemented
in R and those transformations can then be output in PMML format by calling the function with a
NULL value for the model input and a data transformation object as the transforms input. Please
see the documentation for xform_wrap for more information on how to create a data transformation
object.

In addition, the pmml function can also be called using a pre-existing PMML model as the first input
and a data transformation object as the transforms input. The result is a new PMML model with the
transformation inserted as a "LocalTransformations" element in the original model. If the original
model already had a "LocalTransformations" element, the new information will be appended to that
element. If the model variables are derived directly from a chain of transformations defined in the
transforms input, the field names in the model are replaced with the original field names with the
correct data types to make a consistent model. The covered cases include model fields derived from
an original field, model fields derived from a chain of transformations starting from an original field
and multiple fields derived from the same original field.

This package exports models to PMML version 4.4.1.

Please note that package XML_3.95-0.1 or later is required to perform the full and correct func-
tionality of pmml.

If data used for an R model contains features of type character, these must be converted to factors
before the model is trained and converted with pmml.

A list of all the supported models and packages is available in the vignette:

vignette("packages_and_functions", package="pmml").

Value

An object of class XMLNode as that defined by the XML package. This represents the top level, or
root node, of the XML document and is of type PMML. It can be written to file with saveXML.

Author(s)

Graham Williams

References

• PMML home page

• PMML transformations

See Also

pmml.ada, pmml.rules, pmml.coxph, pmml.cv.glmnet, pmml.glm, pmml.hclust, pmml.kmeans,
pmml.ksvm, pmml.lm, pmml.multinom, pmml.naiveBayes, pmml.neighbr, pmml.nnet, pmml.rpart,
pmml.svm, pmml.xgb.Booster

http://dmg.org/pmml/v4-4-1/GeneralStructure.html
http://dmg.org/pmml/v4-4-1/Transformations.html

22 pmml.ada

Examples

Build an lm model
iris_lm <- lm(Sepal.Length ~ ., data = iris)

Convert to pmml
iris_lm_pmml <- pmml(iris_lm)

Create a data transformation object
iris_trans <- xform_wrap(iris)

Transform the 'Sepal.Length' variable
iris_trans <- xform_min_max(iris_trans, xform_info = "column1->d_sl")

Output the tranformation in PMML format
iris_trans_pmml <- pmml(NULL, transforms = iris_trans)

pmml.ada Generate the PMML representation for an ada object from the package
ada.

Description

Generate the PMML representation for an ada object from the package ada.

Usage

S3 method for class 'ada'
pmml(
model,
model_name = "AdaBoost_Model",
app_name = "SoftwareAG PMML Generator",
description = "AdaBoost Model",
copyright = NULL,
model_version = NULL,
transforms = NULL,
missing_value_replacement = NULL,
...

)

Arguments

model An ada object.

model_name A name to be given to the PMML model.

app_name The name of the application that generated the PMML.

description A descriptive text for the Header element of the PMML.

copyright The copyright notice for the model.

pmml.ada 23

model_version A string specifying the model version.

transforms Data transformations.
missing_value_replacement

Value to be used as the ’missingValueReplacement’ attribute for all Mining-
Fields.

... Further arguments passed to or from other methods.

Details

Export the ada model in the PMML MiningModel (multiple models) format. The MiningModel
element consists of a list of TreeModel elements, one in each model segment.

This function implements the discrete adaboost algorithm only. Note that each segment tree is a
classification model, returning either -1 or 1. However the MiningModel (ada algorithm) is doing
a weighted sum of the returned value, -1 or 1. So the value of attribute functionName of element
MiningModel is set to "regression"; the value of attribute functionName of each segment tree is
also set to "regression" (they have to be the same as the parent MiningModel per PMML schema).
Although each segment/tree is being named a "regression" tree, the actual returned score can only
be -1 or 1, which practically turns each segment into a classification tree.

The model in PMML format has 5 different outputs. The "rawValue" output is the value of the
model expressed as a tree model. The boosted tree model uses a transformation of this value, this is
the "boostValue" output. The last 3 outputs are the predicted class and the probabilities of each of
the 2 classes (The ada package Boosted Tree models can only handle binary classification models).

Author(s)

Wen Lin

References

ada: an R package for stochastic boosting (on CRAN)

Examples

Not run:
library(ada)
data(audit)

fit <- ada(Adjusted ~ Employment + Education + Hours + Income, iter = 3, audit)
fit_pmml <- pmml(fit)

End(Not run)

https://CRAN.R-project.org/package=ada

24 pmml.ARIMA

pmml.ARIMA Generate PMML for an ARIMA object the forecast package.

Description

Generate PMML for an ARIMA object the forecast package.

Usage

S3 method for class 'ARIMA'
pmml(
model,
model_name = "ARIMA_model",
app_name = "SoftwareAG PMML Generator",
description = "ARIMA Time Series Model",
copyright = NULL,
model_version = NULL,
transforms = NULL,
missing_value_replacement = NULL,
ts_type = "statespace",
cpi_levels = c(80, 95),
...

)

Arguments

model An ARIMA object from the package forecast.

model_name A name to be given to the PMML model.

app_name The name of the application that generated the PMML.

description A descriptive text for the Header element of the PMML.

copyright The copyright notice for the model.

model_version A string specifying the model version.

transforms Data transformations.
missing_value_replacement

Value to be used as the ’missingValueReplacement’ attribute for all Mining-
Fields.

ts_type The type of time series representation for PMML: "arima" or "statespace".

cpi_levels Vector of confidence levels for prediction intervals.

... Further arguments passed to or from other methods.

pmml.ARIMA 25

Details

The model is represented as a PMML TimeSeriesModel.

When ts_type = "statespace" (by default), the R object is exported as StateSpaceModel in
PMML.

When ts_type = "arima", the R object is exported as ARIMA in PMML with conditional least
squares (CLS). Note that ARIMA models in R are estimated using a state space representation.
Therefore, when using CLS with seasonal models, forecast results between R and PMML may
not match exactly. Additionally, when ts_type="arima", prediction intervals are exported for non-
seasonal models only. For ARIMA models with d=2, the prediction intervals between R and PMML
may not match.

OutputField elements are exported with dataType "string", and contain a collection of all values
up to and including the steps-ahead value supplied during scoring. String output in this form is
facilitated by Extension elements in the PMML file, and is supported by Zementis Server since
version 10.6.0.0.

cpi_levels behaves similar to levels in forecast::forecast: values must be between 0 and
100, non-inclusive.

Models with a drift term will be supported in a future version.

Transforms are currently not supported for ARIMA models.

Value

PMML representation of the ARIMA object.

Author(s)

Dmitriy Bolotov

Examples

Not run:
library(forecast)

non-seasonal model
data("WWWusage")
mod <- Arima(WWWusage, order = c(3, 1, 1))
mod_pmml <- pmml(mod)

seasonal model
data("JohnsonJohnson")
mod_02 <- Arima(JohnsonJohnson,

order = c(1, 1, 1),
seasonal = c(1, 1, 1)

)
mod_02_pmml <- pmml(mod_02)

non-seasonal model exported with Conditional Least Squares
data("WWWusage")
mod <- Arima(WWWusage, order = c(3, 1, 1))

26 pmml.coxph

mod_pmml <- pmml(mod, ts_type = "arima")

End(Not run)

pmml.coxph Generate the PMML representation for a coxph object from the pack-
age survival.

Description

Generate the PMML representation for a coxph object from the package survival.

Usage

S3 method for class 'coxph'
pmml(
model,
model_name = "CoxPH_Survival_Regression_Model",
app_name = "SoftwareAG PMML Generator",
description = "CoxPH Survival Regression Model",
copyright = NULL,
model_version = NULL,
transforms = NULL,
missing_value_replacement = NULL,
...

)

Arguments

model A coxph object.
model_name A name to be given to the PMML model.
app_name The name of the application that generated the PMML.
description A descriptive text for the Header element of the PMML.
copyright The copyright notice for the model.
model_version A string specifying the model version.
transforms Data transformations.
missing_value_replacement

Value to be used as the ’missingValueReplacement’ attribute for all Mining-
Fields.

... Further arguments passed to or from other methods.

Details

A coxph object is the result of fitting a proportional hazards regression model, using the coxph func-
tion from the package survival. Although the survival package supports special terms "cluster",
"tt" and "strata", only the special term "strata" is supported by the pmml package. Note that special
term "strata" cannot be a multiplicative variable and only numeric risk regression is supported.

pmml.cv.glmnet 27

Author(s)

Graham Williams

References

coxph: Survival Analysis

pmml.cv.glmnet Generate the PMML representation for a cv.glmnet object from the
package glmnet.

Description

Generate the PMML representation for a cv.glmnet object from the package glmnet.

Usage

S3 method for class 'cv.glmnet'
pmml(
model,
model_name = "Elasticnet_Model",
app_name = "SoftwareAG PMML Generator",
description = "Generalized Linear Regression Model",
copyright = NULL,
model_version = NULL,
transforms = NULL,
missing_value_replacement = NULL,
dataset = NULL,
s = NULL,
...

)

Arguments

model A cv.glmnet object.

model_name A name to be given to the PMML model.

app_name The name of the application that generated the PMML.

description A descriptive text for the Header element of the PMML.

copyright The copyright notice for the model.

model_version A string specifying the model version.

transforms Data transformations.
missing_value_replacement

Value to be used as the ’missingValueReplacement’ attribute for all Mining-
Fields.

dataset Data used to train the cv.glmnet model.

https://CRAN.R-project.org/package=survival

28 pmml.cv.glmnet

s ’lambda’ parameter at which to output the model. If not given, the lambda.1se
parameter from the model is used instead.

... Further arguments passed to or from other methods.

Details

The glmnet package expects the input and predicted values in a matrix format - not as arrays or
data frames. As of now, it will also accept numerical values only. As such, any string variables must
be converted to numerical ones. One possible way to do so is to use data transformation functions
from this package. However, the result is a data frame. In all cases, lists, arrays and data frames can
be converted to a matrix format using the data.matrix function from the base package. Given a data
frame df, a matrix m can thus be created by using m <- data.matrix(df).

The PMML language requires variable names which will be read in as the column names of the
input matrix. If the matrix does not have variable names, they will be given the default values of
"X1", "X2", ...

Currently, only gaussian and poisson family types are supported.

Value

PMML representation of the cv.glmnet object.

Author(s)

Tridivesh Jena

References

glmnet: Lasso and elastic-net regularized generalized linear models (on CRAN)

Examples

Not run:
library(glmnet)

Create a simple predictor (x) and response(y) matrices:
x <- matrix(rnorm(100 * 20), 100, 20)
y <- rnorm(100)

Build a simple gaussian model:
model1 <- cv.glmnet(x, y)

Output the model in PMML format:
model1_pmml <- pmml(model1)

Shift y between 0 and 1 to create a poisson response:
y <- y - min(y)

Give the predictor variables names (default values are V1,V2,...):
name <- NULL
for (i in 1:20) {

https://CRAN.R-project.org/package=glmnet

pmml.gbm 29

name <- c(name, paste("variable", i, sep = ""))
}
colnames(x) <- name

Create a simple poisson model:
model2 <- cv.glmnet(x, y, family = "poisson")

Output the regression model in PMML format at the lambda
parameter = 0.006:
model2_pmml <- pmml(model2, s = 0.006)

End(Not run)

pmml.gbm Generate the PMML representation for a gbm object from the package
gbm.

Description

Generate the PMML representation for a gbm object from the package gbm.

Usage

S3 method for class 'gbm'
pmml(
model,
model_name = "GBM_Model",
app_name = "SoftwareAG PMML Generator",
description = "Generalized Boosted Tree Model",
copyright = NULL,
model_version = NULL,
transforms = NULL,
missing_value_replacement = NULL,
...

)

Arguments

model A gbm object.

model_name A name to be given to the PMML model.

app_name The name of the application that generated the PMML.

description A descriptive text for the Header element of the PMML.

copyright The copyright notice for the model.

model_version A string specifying the model version.

transforms Data transformations.

30 pmml.gbm

missing_value_replacement

Value to be used as the ’missingValueReplacement’ attribute for all Mining-
Fields.

... Further arguments passed to or from other methods.

Details

The ’gbm’ function uses various distribution types to fit a model; currently only the "bernoulli",
"poisson" and "multinomial" distribution types are supported.

For all cases, the model output includes the gbm prediction type "link" and "response".

Value

PMML representation of the gbm object.

Author(s)

Tridivesh Jena

References

gbm: Generalized Boosted Regression Models (on CRAN)

Examples

Not run:
library(gbm)
data(audit)

mod <- gbm(Adjusted ~ .,
data = audit[, -c(1, 4, 6, 9, 10, 11, 12)],
n.trees = 3, interaction.depth = 4

)

mod_pmml <- pmml(mod)

Classification example:
mod2 <- gbm(Species ~ .,

data = iris, n.trees = 2,
interaction.depth = 3, distribution = "multinomial"

)

The PMML will include a regression model to read the gbm object outputs
and convert to a "response" prediction type.
mod2_pmml <- pmml(mod2)

End(Not run)

https://CRAN.R-project.org/package=gbm

pmml.glm 31

pmml.glm Generate the PMML representation for a glm object from the package
stats.

Description

Generate the PMML representation for a glm object from the package stats.

Usage

S3 method for class 'glm'
pmml(
model,
model_name = "General_Regression_Model",
app_name = "SoftwareAG PMML Generator",
description = "Generalized Linear Regression Model",
copyright = NULL,
model_version = NULL,
transforms = NULL,
missing_value_replacement = NULL,
weights = NULL,
...

)

Arguments

model A glm object.

model_name A name to be given to the PMML model.

app_name The name of the application that generated the PMML.

description A descriptive text for the Header element of the PMML.

copyright The copyright notice for the model.

model_version A string specifying the model version.

transforms Data transformations.
missing_value_replacement

Value to be used as the ’missingValueReplacement’ attribute for all Mining-
Fields.

weights The weights used for building the model.

... Further arguments passed to or from other methods.

Details

The function exports the glm model in the PMML GeneralRegressionModel format.

Note on glm models for 2-class problems: a dataset where the target categorical variable has more
than 2 classes may be turned into a 2-class problem by creating a new target variable that is TRUE

32 pmml.hclust

for a particular class and FALSE for all other classes. While the R formula function allows such
a transformation to be passed directly to it, this may cause issues when the model is converted to
PMML. Therefore, it is advised to create a new 2-class separately, and then pass that variable to
glm(). This is shown in an example below.

Value

PMML representation of the glm object.

References

R project: Fitting Generalized Linear Models

Examples

Not run:
data(iris)
mod <- glm(Sepal.Length ~ ., data = iris, family = "gaussian")
mod_pmml <- pmml(mod)
rm(mod, mod_pmml)

data(audit)
mod <- glm(Adjusted ~ Age + Employment + Education + Income, data = audit, family = binomial(logit))
mod_pmml <- pmml(mod)
rm(mod, mod_pmml)

Create a new 2-class target from a 3-class variable:
data(iris)
dat <- iris[, 1:4]
Add a new 2-class target "Species_setosa" before passing it to glm():
dat$Species_setosa <- iris$Species == "setosa"
mod <- glm(Species_setosa ~ ., data = dat, family = binomial(logit))
mod_pmml <- pmml(mod)
rm(dat, mod, mod_pmml)

End(Not run)

pmml.hclust Generate the PMML representation for a hclust object from the pack-
age amap.

Description

Generate the PMML representation for a hclust object from the package amap.

http://stat.ethz.ch/R-manual/R-devel/library/stats/html/glm.html

pmml.hclust 33

Usage

S3 method for class 'hclust'
pmml(
model,
model_name = "HClust_Model",
app_name = "SoftwareAG PMML Generator",
description = "Hierarchical Cluster Model",
copyright = NULL,
model_version = NULL,
transforms = NULL,
missing_value_replacement = NULL,
centers,
...

)

Arguments

model A hclust object.

model_name A name to be given to the PMML model.

app_name The name of the application that generated the PMML.

description A descriptive text for the Header element of the PMML.

copyright The copyright notice for the model.

model_version A string specifying the model version.

transforms Data transformations.
missing_value_replacement

Value to be used as the ’missingValueReplacement’ attribute for all Mining-
Fields.

centers A list of means to represent the clusters.

... Further arguments passed to or from other methods.

Details

This function converts a hclust object created by the hclusterpar function from the amap package.
A hclust object is a cluster model created hierarchically. The data is divided recursively until a
criteria is met. This function then takes the final model and represents it as a standard k-means
cluster model. This is possible since while the method of constructing the model is different, the
final model can be represented in the same way.

To use this pmml function, therefore, one must pick the number of clusters desired and the coordi-
nate values at those cluster centers. This can be done using the hclusterpar and centers.hclust
functions from the amap and rattle packages respectively.

The hclust object will be approximated by k centroids and is converted into a PMML representation
for kmeans clusters.

Value

PMML representation of the hclust object.

34 pmml.iForest

Author(s)

Graham Williams

References

R project: Hierarchical Clustering

Examples

Not run:

Cluster the 4 numeric variables of the iris dataset.
library(amap)
library(rattle)

model <- hclusterpar(iris[, -5])

Get the information about the cluster centers. The last
parameter of the function used is the number of clusters
desired.
centerInfo <- centers.hclust(iris[, -5], model, 3)

Convert to pmml
model_pmml <- pmml(model, centers = centerInfo)

End(Not run)

pmml.iForest Generate PMML for an iForest object from the isofor package.

Description

Generate PMML for an iForest object from the isofor package.

Usage

S3 method for class 'iForest'
pmml(
model,
model_name = "isolationForest_Model",
app_name = "SoftwareAG PMML Generator",
description = "Isolation Forest Model",
copyright = NULL,
model_version = NULL,
transforms = NULL,
missing_value_replacement = NULL,
anomaly_threshold = 0.6,
parent_invalid_value_treatment = "returnInvalid",

http://stat.ethz.ch/R-manual/R-devel/library/stats/html/hclust.html

pmml.iForest 35

child_invalid_value_treatment = "asIs",
...

)

Arguments

model An iForest object from package isofor.

model_name A name to be given to the PMML model.

app_name The name of the application that generated the PMML.

description A descriptive text for the Header element of the PMML.

copyright The copyright notice for the model.

model_version A string specifying the model version.

transforms Data transformations.
missing_value_replacement

Value to be used as the ’missingValueReplacement’ attribute for all Mining-
Fields.

anomaly_threshold

Double between 0 and 1. Predicted values greater than this are classified as
anomalies.

parent_invalid_value_treatment

Invalid value treatment at the top MiningField level.
child_invalid_value_treatment

Invalid value treatment at the model segment MiningField level.

... Further arguments passed to or from other methods.

Details

This function converts the iForest model object to the PMML format. The PMML outputs the
anomaly score as well as a boolean value indicating whether the input is an anomaly or not. This is
done by simply comparing the anomaly score with anomaly_threshold, a parameter in the pmml
function. The iForest function automatically adds an extra level to all categorical variables, labelled
"."; this is kept in the PMML representation even though the use of this extra factor in the predict
function is unclear.

Value

PMML representation of the iForest object.

Author(s)

Tridivesh Jena

References

isofor package on GitHub

https://github.com/gravesee/isofor

36 pmml.kmeans

See Also

pmml

Examples

Not run:

Build iForest model using iris dataset. Create an isolation
forest with 10 trees. Sample 30 data points at a time from
the iris dataset to fit the trees.
library(isofor)
data(iris)
mod <- iForest(iris, nt = 10, phi = 30)

Convert to PMML:
mod_pmml <- pmml(mod)

End(Not run)

pmml.kmeans Generate the PMML representation for a kmeans object from the pack-
age stats.

Description

The kmeans object (a cluster described by k centroids) is converted into a PMML representation.

Usage

S3 method for class 'kmeans'
pmml(
model,
model_name = "KMeans_Model",
app_name = "SoftwareAG PMML Generator",
description = "KMeans cluster model",
copyright = NULL,
model_version = NULL,
transforms = NULL,
missing_value_replacement = NULL,
algorithm_name = "KMeans: Hartigan and Wong",
...

)

pmml.kmeans 37

Arguments

model A kmeans object.

model_name A name to be given to the PMML model.

app_name The name of the application that generated the PMML.

description A descriptive text for the Header element of the PMML.

copyright The copyright notice for the model.

model_version A string specifying the model version.

transforms Data transformations.
missing_value_replacement

Value to be used as the ’missingValueReplacement’ attribute for all Mining-
Fields.

algorithm_name The variety of kmeans used.

... Further arguments passed to or from other methods.

Details

A kmeans object is obtained by applying the kmeans function from the stats package. This method
typically requires the user to normalize all the variables; these operations can be done using trans-
forms so that the normalization information is included in PMML.

Author(s)

Graham Williams

References

R project: K-Means Clustering

Examples

Not run:
ds <- rbind(

matrix(rnorm(100, sd = 0.3), ncol = 2),
matrix(rnorm(100, mean = 1, sd = 0.3), ncol = 2)

)
colnames(ds) <- c("Dimension1", "Dimension2")
cl <- kmeans(ds, 2)
cl_pmml <- pmml(cl)

End(Not run)

http://stat.ethz.ch/R-manual/R-devel/library/stats/html/kmeans.html

38 pmml.ksvm

pmml.ksvm Generate the PMML representation for a ksvm object from the package
kernlab.

Description

Generate the PMML representation for a ksvm object from the package kernlab.

Usage

S3 method for class 'ksvm'
pmml(
model,
model_name = "SVM_model",
app_name = "SoftwareAG PMML Generator",
description = "Support Vector Machine Model",
copyright = NULL,
model_version = NULL,
transforms = NULL,
missing_value_replacement = NULL,
dataset = NULL,
...

)

Arguments

model A ksvm object.

model_name A name to be given to the PMML model.

app_name The name of the application that generated the PMML.

description A descriptive text for the Header element of the PMML.

copyright The copyright notice for the model.

model_version A string specifying the model version.

transforms Data transformations.
missing_value_replacement

Value to be used as the ’missingValueReplacement’ attribute for all Mining-
Fields.

dataset Data used to train the ksvm model.

... Further arguments passed to or from other methods.

Details

Both classification (multi-class and binary) as well as regression cases are supported.

The following ksvm kernels are currently supported: rbfdot, polydot, vanilladot, tanhdot.

The argument dataset is required since the ksvm object does not contain information about the
used categorical variable.

pmml.lm 39

Value

PMML representation of the ksvm object.

References

kernlab: Kernel-based Machine Learning Lab (on CRAN)

Examples

Not run:
Train a support vector machine to perform classification.
library(kernlab)

model <- ksvm(Species ~ ., data = iris)

model_pmml <- pmml(model, dataset = iris)

End(Not run)

pmml.lm Generate the PMML representation for an lm object from the package
stats.

Description

Generate the PMML representation for an lm object from the package stats.

Usage

S3 method for class 'lm'
pmml(
model,
model_name = "lm_Model",
app_name = "SoftwareAG PMML Generator",
description = "Linear Regression Model",
copyright = NULL,
model_version = NULL,
transforms = NULL,
missing_value_replacement = NULL,
weights = NULL,
...

)

Arguments

model An lm object.

model_name A name to be given to the PMML model.

https://CRAN.R-project.org/package=kernlab

40 pmml.multinom

app_name The name of the application that generated the PMML.

description A descriptive text for the Header element of the PMML.

copyright The copyright notice for the model.

model_version A string specifying the model version.

transforms Data transformations.
missing_value_replacement

Value to be used as the ’missingValueReplacement’ attribute for all Mining-
Fields.

weights The weights used for building the model.

... Further arguments passed to or from other methods.

Details

The resulting PMML representation will not encode interaction terms. Currently, only numeric
regression is supported.

Value

PMML representation of the lm object.

Author(s)

Rajarshi Guha

References

R project: Fitting Linear Models

Examples

Not run:
fit <- lm(Sepal.Length ~ ., data = iris)
fit_pmml <- pmml(fit)

End(Not run)

pmml.multinom Generate the PMML representation for a multinom object from pack-
age nnet.

Description

Generate the multinomial logistic model in the PMML RegressionModel format. The function
implements the use of numerical, categorical and multiplicative terms involving both numerical and
categorical variables.

http://stat.ethz.ch/R-manual/R-devel/library/stats/html/lm.html

pmml.multinom 41

Usage

S3 method for class 'multinom'
pmml(
model,
model_name = "multinom_Model",
app_name = "SoftwareAG PMML Generator",
description = "Multinomial Logistic Model",
copyright = NULL,
model_version = NULL,
transforms = NULL,
missing_value_replacement = NULL,
...

)

Arguments

model A multinom object.
model_name A name to be given to the PMML model.
app_name The name of the application that generated the PMML.
description A descriptive text for the Header element of the PMML.
copyright The copyright notice for the model.
model_version A string specifying the model version.
transforms Data transformations.
missing_value_replacement

Value to be used as the ’missingValueReplacement’ attribute for all Mining-
Fields.

... Further arguments passed to or from other methods.

Value

PMML representation of the multinom object.

Author(s)

Tridivesh Jena

References

nnet: Feed-forward Neural Networks and Multinomial Log-Linear Models (on CRAN)

Examples

Not run:
library(nnet)
fit <- multinom(Species ~ ., data = iris)
fit_pmml <- pmml(fit)

End(Not run)

https://CRAN.R-project.org/package=nnet

42 pmml.naiveBayes

pmml.naiveBayes Generate the PMML representation for a naiveBayes object from the
package e1071.

Description

Generate the PMML representation for a naiveBayes object from the package e1071.

Usage

S3 method for class 'naiveBayes'
pmml(
model,
model_name = "naiveBayes_Model",
app_name = "SoftwareAG PMML Generator",
description = "NaiveBayes Model",
copyright = NULL,
model_version = NULL,
transforms = NULL,
missing_value_replacement = NULL,
predicted_field,
...

)

Arguments

model A naiveBayes object.

model_name A name to be given to the PMML model.

app_name The name of the application that generated the PMML.

description A descriptive text for the Header element of the PMML.

copyright The copyright notice for the model.

model_version A string specifying the model version.

transforms Data transformations.
missing_value_replacement

Value to be used as the ’missingValueReplacement’ attribute for all Mining-
Fields.

predicted_field

Required parameter; the name of the predicted field.

... Further arguments passed to or from other methods.

Details

The PMML representation of the NaiveBayes model implements the definition as specified by the
Data Mining Group: intermediate probability values which are less than the threshold value are
replaced by the threshold value. This is different from the prediction function of the e1071 in which

pmml.neighbr 43

only probability values of 0 and standard deviations of continuous variables of with the value 0 are
replaced by the threshold value. The two values will therefore not match exactly for cases involving
very small probabilities.

Value

PMML representation of the naiveBayes object.

Author(s)

Tridivesh Jena

References

• e1071: Misc Functions of the Department of Statistics, Probability Theory Group (Formerly:
E1071), TU Wien (on CRAN)

• A. Guazzelli, T. Jena, W. Lin, M. Zeller (2013). Extending the Naive Bayes Model Element
in PMML: Adding Support for Continuous Input Variables. In Proceedings of the 19th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining.

Examples

Not run:
library(e1071)

data(houseVotes84)
house <- na.omit(houseVotes84)

model <- naiveBayes(Class ~ V1 + V2 + V3, data = house, threshold = 0.003)

model_pmml <- pmml(model, dataset = house, predicted_field = "Class")

End(Not run)

pmml.neighbr Generate PMML for a neighbr object from the neighbr package.

Description

Generate PMML for a neighbr object from the neighbr package.

Usage

S3 method for class 'neighbr'
pmml(
model,
model_name = "kNN_model",
app_name = "SoftwareAG PMML Generator",

https://CRAN.R-project.org/package=e1071
https://CRAN.R-project.org/package=e1071

44 pmml.neighbr

description = "K Nearest Neighbors Model",
copyright = NULL,
model_version = NULL,
transforms = NULL,
missing_value_replacement = NULL,
...

)

Arguments

model A neighbr object.

model_name A name to be given to the PMML model.

app_name The name of the application that generated the PMML.

description A descriptive text for the Header element of the PMML.

copyright The copyright notice for the model.

model_version A string specifying the model version.

transforms Data transformations.
missing_value_replacement

Value to be used as the ’missingValueReplacement’ attribute for all Mining-
Fields.

... Further arguments passed to or from other methods.

Details

The model is represented in the PMML NearestNeighborModel format.

The current version of this converter does not support transformations (transforms must be left
as NULL), sets categoricalScoringMethod to "majorityVote", sets continuousScoringMethod to
"average", and isTransoformed to "false".

Value

PMML representation of the neighbr object.

See Also

pmml, PMML KNN specification

Examples

Not run:

Continuous features with continuous target, categorical target,
and neighbor ranking:

library(neighbr)
data(iris)

Add an ID column to the data for neighbor ranking:

http://dmg.org/pmml/v4-4-1/KNN.html

pmml.neighbr 45

iris$ID <- c(1:150)

Train set contains all predicted variables, features, and ID column:
train_set <- iris[1:140,]

Omit predicted variables and ID column from test set:
test_set <- iris[141:150, -c(4, 5, 6)]

fit <- knn(
train_set = train_set, test_set = test_set,
k = 3,
categorical_target = "Species",
continuous_target = "Petal.Width",
comparison_measure = "squared_euclidean",
return_ranked_neighbors = 3,
id = "ID"

)

fit_pmml <- pmml(fit)

Logical features with categorical target and neighbor ranking:

library(neighbr)
data("houseVotes84")

Remove any rows with N/A elements:
dat <- houseVotes84[complete.cases(houseVotes84),]

Change all {yes,no} factors to {0,1}:
feature_names <- names(dat)[!names(dat) %in% c("Class", "ID")]
for (n in feature_names) {

levels(dat[, n])[levels(dat[, n]) == "n"] <- 0
levels(dat[, n])[levels(dat[, n]) == "y"] <- 1

}

Change factors to numeric:
for (n in feature_names) {

dat[, n] <- as.numeric(levels(dat[, n]))[dat[, n]]
}

Add an ID column for neighbor ranking:
dat$ID <- c(1:nrow(dat))

Train set contains features, predicted variable, and ID:
train_set <- dat[1:225,]

Test set contains features only:
test_set <- dat[226:232, !names(dat) %in% c("Class", "ID")]

fit <- knn(
train_set = train_set, test_set = test_set,
k = 5,

46 pmml.nnet

categorical_target = "Class",
comparison_measure = "jaccard",
return_ranked_neighbors = 3,
id = "ID"

)

fit_pmml <- pmml(fit)

End(Not run)

pmml.nnet Generate the PMML representation for a nnet object from package
nnet.

Description

Generate the PMML representation for a nnet object from package nnet.

Usage

S3 method for class 'nnet'
pmml(
model,
model_name = "NeuralNet_model",
app_name = "SoftwareAG PMML Generator",
description = "Neural Network Model",
copyright = NULL,
model_version = NULL,
transforms = NULL,
missing_value_replacement = NULL,
...

)

Arguments

model A nnet object.

model_name A name to be given to the PMML model.

app_name The name of the application that generated the PMML.

description A descriptive text for the Header element of the PMML.

copyright The copyright notice for the model.

model_version A string specifying the model version.

transforms Data transformations.
missing_value_replacement

Value to be used as the ’missingValueReplacement’ attribute for all Mining-
Fields.

... Further arguments passed to or from other methods.

pmml.randomForest 47

Details

This function supports both regression and classification neural network models. The model is
represented in the PMML NeuralNetwork format.

Value

PMML representation of the nnet object.

Author(s)

Tridivesh Jena

References

nnet: Feed-forward Neural Networks and Multinomial Log-Linear Models (on CRAN)

Examples

Not run:
library(nnet)
fit <- nnet(Species ~ ., data = iris, size = 4)
fit_pmml <- pmml(fit)

rm(fit)

End(Not run)

pmml.randomForest Generate the PMML representation for a randomForest object from
the package randomForest.

Description

Generate the PMML representation for a randomForest object from the package randomForest.

Usage

S3 method for class 'randomForest'
pmml(
model,
model_name = "randomForest_Model",
app_name = "SoftwareAG PMML Generator",
description = "Random Forest Tree Model",
copyright = NULL,
model_version = NULL,
transforms = NULL,
missing_value_replacement = NULL,
parent_invalid_value_treatment = "returnInvalid",

https://CRAN.R-project.org/package=nnet

48 pmml.randomForest

child_invalid_value_treatment = "asIs",
...

)

Arguments

model A randomForest object.

model_name A name to be given to the PMML model.

app_name The name of the application that generated the PMML.

description A descriptive text for the Header element of the PMML.

copyright The copyright notice for the model.

model_version A string specifying the model version.

transforms Data transformations.
missing_value_replacement

Value to be used as the ’missingValueReplacement’ attribute for all Mining-
Fields.

parent_invalid_value_treatment

Invalid value treatment at the top MiningField level.
child_invalid_value_treatment

Invalid value treatment at the model segment MiningField level.

... Further arguments passed to or from other methods.

Details

This function outputs a Random Forest in PMML format.

Value

PMML representation of the randomForest object.

Author(s)

Tridivesh Jena

References

randomForest: Breiman and Cutler’s random forests for classification and regression

Examples

Not run:
Build a randomForest model
library(randomForest)
iris_rf <- randomForest(Species ~ ., data = iris, ntree = 20)

Convert to pmml
iris_rf_pmml <- pmml(iris_rf)

https://CRAN.R-project.org/package=randomForest

pmml.rpart 49

rm(iris_rf)

End(Not run)

pmml.rpart Generate the PMML representation for an rpart object from the pack-
age rpart.

Description

Generate the PMML representation for an rpart object from the package rpart.

Usage

S3 method for class 'rpart'
pmml(
model,
model_name = "RPart_Model",
app_name = "SoftwareAG PMML Generator",
description = "RPart Decision Tree Model",
copyright = NULL,
model_version = NULL,
transforms = NULL,
missing_value_replacement = NULL,
dataset = NULL,
...

)

Arguments

model An rpart object.

model_name A name to be given to the PMML model.

app_name The name of the application that generated the PMML.

description A descriptive text for the Header element of the PMML.

copyright The copyright notice for the model.

model_version A string specifying the model version.

transforms Data transformations.
missing_value_replacement

Value to be used as the ’missingValueReplacement’ attribute for all Mining-
Fields.

dataset Data used to train the rpart model.

... Further arguments passed to or from other methods.

50 pmml.rules

Details

Supports regression tree as well as classification. The object is represented in the PMML TreeModel
format.

Value

PMML representation of the rpart object.

Author(s)

Graham Williams

References

rpart: Recursive Partitioning (on CRAN)

Examples

Not run:
library(rpart)

fit <- rpart(Species ~ ., data = iris)

fit_pmml <- pmml(fit)

End(Not run)

pmml.rules Generate the PMML representation for a rules or an itemset object
from package arules.

Description

Generate the PMML representation for a rules or an itemset object from package arules.

Usage

S3 method for class 'rules'
pmml(
model,
model_name = "arules_Model",
app_name = "SoftwareAG PMML Generator",
description = "Association Rules Model",
copyright = NULL,
model_version = NULL,
transforms = NULL,
...

)

https://CRAN.R-project.org/package=rpart

pmml.svm 51

Arguments

model A rules or itemsets object.

model_name A name to be given to the PMML model.

app_name The name of the application that generated the PMML.

description A descriptive text for the Header element of the PMML.

copyright The copyright notice for the model.

model_version A string specifying the model version.

transforms Data transformations.

... Further arguments passed to or from other methods.

Details

The model is represented in the PMML AssociationModel format.

Value

PMML representation of the rules or itemsets object.

Author(s)

Graham Williams, Michael Hahsler

References

arules: Mining Association Rules and Frequent Itemsets

pmml.svm Generate the PMML representation of an svm object from the e1071
package.

Description

Generate the PMML representation of an svm object from the e1071 package.

Usage

S3 method for class 'svm'
pmml(
model,
model_name = "LIBSVM_Model",
app_name = "SoftwareAG PMML Generator",
description = "Support Vector Machine Model",
copyright = NULL,
model_version = NULL,
transforms = NULL,

https://CRAN.R-project.org/package=arules

52 pmml.svm

missing_value_replacement = NULL,
dataset = NULL,
detect_anomaly = TRUE,
...

)

Arguments

model An svm object from package e1071.
model_name A name to be given to the PMML model.
app_name The name of the application that generated the PMML.
description A descriptive text for the Header element of the PMML.
copyright The copyright notice for the model.
model_version A string specifying the model version.
transforms Data transformations.
missing_value_replacement

Value to be used as the ’missingValueReplacement’ attribute for all Mining-
Fields.

dataset Required for one-classification only; data used to train the one-class SVM model.
detect_anomaly Required for one-classification only; boolean indicating whether to detect anoma-

lies (TRUE) or inliers (FALSE).
... Further arguments passed to or from other methods.

Details

Classification and regression models are represented in the PMML SupportVectorMachineModel
format. One-Classification models are represented in the PMML AnomalyDetectionModel format.
Please see below for details on the differences.

Value

PMML representation of the svm object.

Classification and Regression Models

Note that the sign of the coefficient of each support vector flips between the R object and the
exported PMML file for classification and regression models. This is due to the minor difference
in the training/scoring formula between the LIBSVM algorithm and the DMG specification. Hence
the output value of each support vector machine has a sign flip between the DMG definition and the
svm prediction function.
In a classification model, even though the output of the support vector machine has a sign flip, it
does not affect the final predicted category. This is because in the DMG definition, the winning
category is defined as the left side of threshold 0 while the LIBSVM defines the winning category
as the right side of threshold 0.
For a regression model, the exported PMML code has two OutputField elements. The OutputField
predictedValue shows the support vector machine output per DMG definition. The OutputField
svm_predict_function gives the value corresponding to the R predict function for the svm model.
This output should be used when making model predictions.

pmml.svm 53

One-Classification SVM Models

For a one-classification svm (OCSVM) model, the PMML has two OutputField elements: anomalyScore
and one of anomaly or outlier.

The OutputField anomalyScore is the signed distance to the separating boundary; anomalyScore
corresponds to the decision.values attribute of the output of the svm predict function in R.

The second OutputField depends the value of detect_anomaly. By default, detect_anomaly is
TRUE, which results in the second OutputField being anomaly. The anomaly OutputField is TRUE
when an anomaly is detected. This field conforms to the DMG definition of an anomaly detection
model. This value is the opposite of the prediction by the e1071::svm object in R.

Setting detect_anomaly to FALSE results in the second field instead being inlier. This Output-
Field is TRUE when an inlier is detected, and conforms to the e1071 definition of one-class SVMs.
This field is FALSE when an anomaly is detected; that is, the R svm model predicts whether an
observation belongs to the class. When comparing the predictions from R and PMML, this field
should be used, since it will match R’s output.

For example, say that for an an observation, the R OCSVM model predicts a positive decision
value of 0.4 and label of TRUE. According to the R object, this means that the observation is an
inlier. By default, the PMML export of this model will give the following for the same input:
anomalyScore = 0.4, anomaly = "false". According to the PMML, the observation is not an
anomaly. If the same R object is instead exported with detect_anomaly = FALSE, the PMML will
then give: anomalyScore = 0.4, inlier = "true", and this result agrees with R.

Note that there is no sign flip for anomalyScore between R and PMML for OCSVM models.

To export a OCSVM model, an additional argument, dataset, is required by the function. This
argument expects a dataframe with data that was used to train the model. This is necessary be-
cause for one-class svm, the R svm object does not contain information about the data types of
the features used to train the model. The exporter does not yet support the formula interface for
one-classification models, so the default S3 method must be used to train the SVM. The data used
to train the one-class SVM must be numeric and not of integer class.

References

* R project CRAN package: e1071: Misc Functions of the Department of Statistics, Probability
Theory Group (Formerly: E1071), TU Wien https://CRAN.R-project.org/package=e1071

* Chang, Chih-Chung and Lin, Chih-Jen, LIBSVM: a library for Support Vector Machines https:
//www.csie.ntu.edu.tw/~cjlin/libsvm/

See Also

pmml, PMML SVM specification

Examples

Not run:
library(e1071)
data(iris)

Classification with a polynomial kernel
fit <- svm(Species ~ ., data = iris, kernel = "polynomial")

https://CRAN.R-project.org/package=e1071
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://dmg.org/pmml/v4-4-1/SupportVectorMachine.html

54 pmml.xgb.Booster

fit_pmml <- pmml(fit)

Regression
fit <- svm(Sepal.Length ~ Sepal.Width + Petal.Length + Petal.Width, data = iris)
fit_pmml <- pmml(fit)

Anomaly detection with one-classification
fit <- svm(iris[, 1:4],

y = NULL,
type = "one-classification"

)
fit_pmml <- pmml(fit, dataset = iris[, 1:4])

Inlier detection with one-classification
fit <- svm(iris[, 1:4],

y = NULL,
type = "one-classification",
detect_anomaly = FALSE

)
fit_pmml <- pmml(fit, dataset = iris[, 1:4])

End(Not run)

pmml.xgb.Booster Generate PMML for a xgb.Booster object from the package xgboost.

Description

Generate PMML for a xgb.Booster object from the package xgboost.

Usage

S3 method for class 'xgb.Booster'
pmml(
model,
model_name = "xboost_Model",
app_name = "SoftwareAG PMML Generator",
description = "Extreme Gradient Boosting Model",
copyright = NULL,
model_version = NULL,
transforms = NULL,
missing_value_replacement = NULL,
input_feature_names = NULL,
output_label_name = NULL,
output_categories = NULL,
xgb_dump_file = NULL,
parent_invalid_value_treatment = "returnInvalid",
child_invalid_value_treatment = "asIs",

pmml.xgb.Booster 55

...
)

Arguments

model An object created by the ’xgboost’ function.

model_name A name to be given to the PMML model.

app_name The name of the application that generated the PMML.

description A descriptive text for the Header element of the PMML.

copyright The copyright notice for the model.

model_version A string specifying the model version.

transforms Data transformations.
missing_value_replacement

Value to be used as the ’missingValueReplacement’ attribute for all Mining-
Fields.

input_feature_names

Input variable names used in training the model.
output_label_name

Name of the predicted field.
output_categories

Possible values of the predicted field, for classification models.

xgb_dump_file Name of file saved using ’xgb.dump’ function.
parent_invalid_value_treatment

Invalid value treatment at the top MiningField level.
child_invalid_value_treatment

Invalid value treatment at the model segment MiningField level.

... Further arguments passed to or from other methods.

Details

The xgboost function takes as its input either an xgb.DMatrix object or a numeric matrix. The
input field information is not stored in the R model object, hence the field information must be
passed on as inputs. This enables the PMML to specify field names in its model representation.
The R model object does not store information about the fitted tree structure either. However, this
information can be extracted from the xgb.model.dt.tree function and the file saved using the
xgb.dump function. The xgboost library is therefore needed in the environment and this saved file
is needed as an input as well.

The following objectives are currently supported: multi:softprob, multi:softmax, binary:logistic.

The pmml exporter will throw an error if the xgboost model model only has one tree.

The exporter only works with numeric matrices. Sparse matrices must be converted to matrix
objects before training an xgboost model for the export to work correctly.

Value

PMML representation of the xgb.Booster object.

56 pmml.xgb.Booster

Author(s)

Tridivesh Jena

References

xgboost: Extreme Gradient Boosting

See Also

pmml, PMML schema

Examples

Not run:
Example using the xgboost package example model.

library(xgboost)
data(agaricus.train, package = "xgboost")
data(agaricus.test, package = "xgboost")

train <- agaricus.train
test <- agaricus.test

model1 <- xgboost(
data = train$data, label = train$label,
max_depth = 2, eta = 1, nthread = 2,
nrounds = 2, objective = "binary:logistic"

)

Save the tree information in an external file:
xgb.dump(model1, "model1.dumped.trees")

Convert to PMML:
model1_pmml <- pmml(model1,

input_feature_names = colnames(train$data),
output_label_name = "prediction1",
output_categories = c("0", "1"),
xgb_dump_file = "model1.dumped.trees"

)

Multinomial model using iris data:
model2 <- xgboost(

data = as.matrix(iris[, 1:4]),
label = as.numeric(iris[, 5]) - 1,
max_depth = 2, eta = 1, nthread = 2, nrounds = 2,
objective = "multi:softprob", num_class = 3

)

Save the tree information in an external file:
xgb.dump(model2, "model2.dumped.trees")

Convert to PMML:

https://CRAN.R-project.org/package=xgboost
http://dmg.org/pmml/v4-4-1/GeneralStructure.html

rename_wrap_var 57

model2_pmml <- pmml(model2,
input_feature_names = colnames(as.matrix(iris[, 1:4])),
output_label_name = "Species",
output_categories = c(1, 2, 3), xgb_dump_file = "model2.dumped.trees"

)

End(Not run)

rename_wrap_var Rename a variable in the xform_wrap transform object.

Description

Rename a variable in the xform_wrap transform object.

Usage

rename_wrap_var(wrap_object, xform_info = NA, ...)

Arguments

wrap_object Wrapper object obtained by using the xform_wrap function on the raw data.

xform_info Specification of details of the renaming.

... Further arguments passed to or from other methods.

Details

Once input data is wrapped by the xform_wrap function, it is somewhat involved to rename a
variable inside. This function makes it easier to do so. Given a variable named input_var and the
name one wishes to rename it to, output_var, the rename command options are:

xform_info="input_var -> output_var"

There are two methods in which the variables can be referred to. The first method is to use its
column number; given the data attribute of the boxData object, this would be the order at which
the variable appears. This can be indicated in the format "column#". The second method is to refer
to the variable by its name. This method will work even if the renamed value already exists; in
which case there will be two variables with the same name.

If no input variable name is provided, the original object is returned with no renaming performed.

Value

R object containing the raw data, the transformed data and data statistics.

Author(s)

Tridivesh Jena

58 save_pmml

See Also

xform_wrap

Examples

Load the standard iris dataset
data(iris)

First wrap the data
iris_box <- xform_wrap(iris)

We wish to refer to the variables "Sepal.Length" and
"Sepal.Width" as "SL" and "SW"
iris_box <- rename_wrap_var(wrap_object = iris_box, xform_info = "column1->SL")
iris_box <- rename_wrap_var(wrap_object = iris_box, xform_info = "Sepal.Width->SW")

save_pmml Save a pmml object as an external PMML file.

Description

Save a pmml object to an external PMML file.

Usage

save_pmml(doc, name)

Arguments

doc The pmml model.

name The name of the external file where the PMML is to be saved.

Author(s)

Tridivesh Jena

Examples

Not run:
Make a gbm model:
library(gbm)
data(audit)

mod <- gbm(Adjusted ~ .,
data = audit[, -c(1, 4, 6, 9, 10, 11, 12)],
n.trees = 3,
interaction.depth = 4

)

xform_discretize 59

Export to PMML:
pmod <- pmml(mod)

Save to an external file:
save_pmml(pmod, "GBMModel.pmml")

End(Not run)

xform_discretize Discretize a continuous variable as indicated by interval mappings in
accordance with the PMML element Discretize.

Description

Discretize a continuous variable as indicated by interval mappings in accordance with the PMML
element Discretize.

Usage

xform_discretize(
wrap_object,
xform_info,
table,
default_value = NA,
map_missing_to = NA,
...

)

Arguments

wrap_object Output of xform_wrap or another transformation function.

xform_info Specification of details of the transformation. This may be a name of an external
file or a list of data frames. Even if only 1 variable is to be transformed, the
information for that transform should be given as a list with 1 element.

table Name of external CSV file containing the map from input to output values.

default_value Value to be given to the transformed variable if the value of the input variable
does not lie in any of the defined intervals. If ’xform_info’ is a list, this is a
vector with each element corresponding to the corresponding list element.

map_missing_to Value to be given to the transformed variable if the value of the input variable is
missing. If ’xform_info’ is a list, this is a vector with each element correspond-
ing to the corresponding list element.

... Further arguments passed to or from other methods.

60 xform_discretize

Details

Create a discrete variable from a continuous one as indicated by interval mappings. The discrete
variable value depends on interval in which the continuous variable value lies. The mapping from
intervals to discrete values can be given in an external table file referred to in the transform command
or as a list of data frames.

Given a list of intervals and the discrete value each interval is linked to, a discrete variable is defined
with the value indicated by the interval where it lies in. If a continuous variable InVar of data type
InType is to be converted to a variable OutVar of data type OutType, the transformation command
is in the format:

xform_info = "[InVar->OutVar][InType->OutType]", table="TableFileName",
default_value="defVal", map_missing_to="missingVal"

where TableFileName is the name of the CSV file containing the interval to discrete value map. The
data types of the variables can be any of the ones defined in the PMML format including integer,
double or string. defVal is the default value of the transformed variable and if any of the input
values are missing, missingVal is the value of the transformed variable.

The arguments InType, OutType, default_value and map_missing_to are optional. The CSV file
containing the table should not have any row and column identifiers, and the values given must be
in the same order as in the map command. If the data types of the variables are not given, the data
types of the input variables are attempted to be determined from the boxData argument. If that is
not possible, the data types are assumed to be string.

Intervals are either given by the left or right limits, in which case the other limit is considered as
infinite. It may also be given by both the left and right limits separated by the character ":". An
example of how intervals should be defined in the external file are:

rightVal1),outVal1
rightVal2],outVal2
[leftVal1:rightVal3),outVal3
(leftVal2:rightVal4],outVal4
(leftVal,outVal5

which, given an input value inVal and the output value to be calculated out, means that:

if(inVal < rightVal1) out=outVal1
f(inVal <= rightVal2) out=outVal2
if((inVal >= leftVal1) and (inVal < rightVal3)) out=outVal3
if((inVal > leftVal2) and (inVal <= rightVal4)) out=outVal4
if(inVal > leftVal) out=outVal5

It is also possible to give the information about the transforms without an external file, using a list of
data frames. Each data frame defines a discretization operation for 1 input variable. The first row of
the data frame gives the original field name, the derived field name, the left interval, the left value,
the right interval and the right value. The second row gives the data type of the values as listed in the
first row. The second row with the data types of the fields is not required. If not given, all fields are
assumed to be strings. In this input format, the ’default_value’ and ’map_missing_to’ parameters
should be vectors. The first element of each vector will correspond to the derived field defined in
the 1st element of the ’xform_info’ list etc. Although somewhat more complicated, this method is

xform_discretize 61

designed to not require any external features. Further, once the initial list is constructed, modifying
it is a simple operation; making this a better method to use if the parameters of the transformation
are to be modified frequently and/or automatically. This is made more clear in the example below.

Value

R object containing the raw data, the transformed data and data statistics.

Author(s)

Tridivesh Jena

See Also

xform_wrap

Examples

First wrap the data
iris_box <- xform_wrap(iris)
Not run:
Convert the continuous variable "Sepal.Length" to a discrete
variable "dsl". The intervals to be used for this transformation is
given in a file, "intervals.csv", whose content is, for example,:
#
5],val1
(5:6],22
(6,val2
#
This will be used to create a discrete variable named "dsl" of dataType
"string" such that:
if(Sepal.length <= 5) then dsl = "val1"
if((Sepal.Lenght > 5) and (Sepal.Length <= 6)) then dsl = "22"
if(Sepal.Length > 6) then dsl = "val2"
#
Give "dsl" the value 0 if the input variable value is missing.
iris_box <- xform_discretize(iris_box,

xform_info = "[Sepal.Length -> dsl][double -> string]",
table = "intervals.csv", map_missing_to = "0"

)

End(Not run)

A different transformation using a list of data frames, of size 1:
t <- list()
m <- data.frame(rbind(

c(
"Petal.Length", "dis_pl", "leftInterval", "leftValue",
"rightInterval", "rightValue"

),
c(

"double", "integer", "string", "double", "string",

62 xform_discretize

"double"
),
c("0)", 0, "open", NA, "Open", 0),
c(NA, 1, "closed", 0, "Open", 1),
c(NA, 2, "closed", 1, "Open", 2),
c(NA, 3, "closed", 2, "Open", 3),
c(NA, 4, "closed", 3, "Open", 4),
c("[4", 5, "closed", 4, "Open", NA)

), stringsAsFactors = TRUE)

Give column names to make it look nice; not necessary!
colnames(m) <- c(

"Petal.Length", "dis_pl", "leftInterval", "leftValue",
"rightInterval", "rightValue"

)

A textual representation of the data frame is:
Petal.Length dis_pl leftInterval leftValue rightInterval rightValue
1 Petal.Length dis_pl leftInterval leftValue rightInterval rightValue
2 double integer string double string double
3 0) 0 open <NA> Open 0
4 <NA> 1 closed 0 Open 1
5 <NA> 2 closed 1 Open 2
6 <NA> 3 closed 2 Open 3
7 <NA> 4 closed 3 Open 4
8 (4 5 closed 4 Open <NA>
#
This is a transformation that defines a derived field 'dis_pl'
which has the integer value '0' if the original field
'Petal.Length' has a value less than 0. The derived field has a
value '1' if the input is greater than or equal to 0 and less
than 1. Note that the values of the 1st column after row 2 have
been deliberately given NA values in the middle. This is to
show that that column is meant for a textual representation of
the transformation as defined for the method involving external
files; however in this methodtheir values are not used.

Add the data frame to a list. The default values and the missing
values should be given as a vector, each element of the vector
corresponding to the element at the same index in the list. If
these values are not given as a vector, they will be used for the
first list element only.
t[[1]] <- m
def <- c(11)
mis <- c(22)
iris_box <- xform_discretize(iris_box,

xform_info = t, default_value = def,
map_missing_to = mis

)

Make a simple model to see the effect.
fit <- lm(Petal.Width ~ ., iris_box$data[, -5])
fit_pmml <- pmml(fit, transforms = iris_box)

xform_function 63

xform_function Add a function transformation to a xform_wrap object.

Description

Add a function transformation to a xform_wrap object.

Usage

xform_function(
wrap_object,
orig_field_name,
new_field_name = "newField",
new_field_data_type = "numeric",
expression,
map_missing_to = NA

)

Arguments

wrap_object Output of xform_wrap or another transformation function.

orig_field_name

String specifying name(s) of the original data field(s) being used in the transfor-
mation.

new_field_name Name of the new field created by the transformation.

new_field_data_type

R data type of the new field created by the transformation ("numeric" or "fac-
tor").

expression String expression specifying the transformation.

map_missing_to Value to be given to the transformed variable if the value of any input variable
is missing.

Details

Calculate the expression provided in expression for every row in the wrap_object$data data
frame. The expression argument must represent a valid R expression, and any functions used in
expression must be defined in the current environment.

The name of the new field is optional (a default name is provided), but an error will be thrown if
attempting to create a field with a name that already exists in the xform_wrap object.

When new_field_data_type = "numeric", the DerivedField attributes in PMML will be dataType
= "double" and optype = "continuous". When new_field_data_type = "factor", these at-
tributes will be dataType = "string" and optype = "categorical".

64 xform_map

Value

R object containing the raw data, the transformed data and data statistics. The data data frame
will contain a new new_field_name column, and field_data will contain a new new_field_name
row.

See Also

xform_wrap

Examples

Load the standard iris dataset:
data(iris)

Wrap the data:
iris_box <- xform_wrap(iris)

Perform a transform on the Sepal.Length field:
the value is squared and then divided by 100
iris_box <- xform_function(iris_box,

orig_field_name = "Sepal.Length",
new_field_name = "Sepal.Length.Transformed",
expression = "(Sepal.Length^2)/100"

)

Combine two fields to create another new feature:
iris_box <- xform_function(iris_box,

orig_field_name = "Sepal.Width, Petal.Width",
new_field_name = "Width.Sum",
expression = "Sepal.Width + Sepal.Length"

)

Create linear model using the derived features:
fit <- lm(Petal.Length ~
Sepal.Length.Transformed + Width.Sum, data = iris_box$data)

Create pmml from the fit:
fit_pmml <- pmml(fit, transform = iris_box)

xform_map Implement a map between discrete values in accordance with the
PMML element MapValues.

Description

Implement a map between discrete values in accordance with the PMML element MapValues.

xform_map 65

Usage

xform_map(
wrap_object,
xform_info,
table = NA,
default_value = NA,
map_missing_to = NA,
...

)

Arguments

wrap_object Output of xform_wrap or another transformation function.

xform_info Specification of details of the transformation. It can be a text giving the external
file name or a list of data frames. Even if only 1 variable is to be transformed,
the information for that map should be given as a list with 1 element.

table Name of external CSV file containing the map from input to output values.

default_value The default value to be given to the transformed variable. If ’xform_info’ is a
list, this is a vector with each element corresponding to the corresponding list
element.

map_missing_to Value to be given to the transformed variable if the value of the input variable is
missing. If ’xform_info’ is a list, this is a vector with each element correspond-
ing to the corresponding list element.

... Further arguments passed to or from other methods.

Details

Map discrete values of an input variable to a discrete value of the transformed variable. The map
can be given in an external table file referred to in the transform command or as a list of data frames,
each data frame defining a map transform for one variable.

Given a map from the combination of variables InVar1, InVar2, ... to the transformed variable
OutVar, where the variables have the data types InType1, InType2, ... and OutType, the map
command is in the format:

xform_info = "[InVar1,InVar2,... -> OutVar][InType1,InType2,... -> OutType]"
table = "TableFileName", default_value = "defVal", map_missing_to = "missingVal"

where TableFileName is the name of the CSV file containing the map. The map can be a N to
1 map where N is greater or equal to 1. The data types of the variables can be any of the ones
defined in the PMML format including integer, double or string. defVal is the default value of the
transformed variable and if any of the map input values are missing, missingVal is the value of the
transformed variable.

The arguments InType, OutType, default_value and map_missing_to are optional. The CSV file
containing the table should not have any row and column identifiers, and the values given must be
in the same order as in the map command. If the data types of the variables are not given, the data

66 xform_map

types of the input variables are attempted to be determined from the boxData argument. If that is
not possible, the data type is assumed to be string.

It is also possible to give the maps to be implemented without an external file using a list of data
frames. Each data frame defines a map for 1 input variable. Given a data frame with N+1 columns,
it is assumed that the map is a N to 1 map where the last column of the data frame corresponds to
the derived field. The 1st row is assumed to be the names of the fields and the second row the data
types of the fields. The rest of the rows define the map; each combination of the input values in
a row is mapped to the value in the last column of that row. The second row with the data types
of the fields is not required. If not given, all fields are assumed to be strings. In this input format,
the ’default_value’ and ’map_missing_to’ parameters should be vectors. The first element of each
vector will correspond to the derived field defined in the 1st element of the ’xform_info’ list etc.
These are made clearer in the example below.

Value

R object containing the raw data, the transformed data and data statistics.

Author(s)

Tridivesh Jena

See Also

xform_wrap, pmml

Examples

Load the standard audit dataset, part of the pmml package:
data(audit)

First wrap the data:
audit_box <- xform_wrap(audit)
Not run:
One of the variables, "Sex", has 2 possible values: "Male"
and "Female". If these string values have to be mapped to a
numeric value, a file has to be created, say "map_audit.csv",
whose content is, for example:
#
Male,1
Female,2
#
Transform the variable "Gender" to a variable "d_gender"
such that:
if Sex = "Male" then d_sex = "1"
if Sex = "Female" then d_sex = "2"
#
Give "d_sex" the value 0 if the input variable value is
missing.
audit_box <- xform_map(audit_box,

xform_info = "[Sex -> d_sex][string->integer]",
table = "map_audit.csv", map_missing_to = "0"

xform_min_max 67

)

End(Not run)
Same as above, with an extra variable, but using data frames.
The top 2 rows give the variable names and their data types.
The rest represent the map. For example, the third row
indicates that when the input variable "Sex" has the value
"Male" and the input variable "Employment" has
the value "PSLocal", the output variable "d_sex" should have
the value 1.
t <- list()
m <- data.frame(

c("Sex", "string", "Male", "Female"),
c("Employment", "string", "PSLocal", "PSState"),
c("d_sex", "integer", 1, 0),
stringsAsFactors = TRUE

)
t[[1]] <- m

Give default value as a vector and missing value as a string,
this is only possible as there is only one map defined. If
default values is not given, it will simply not be given in
the PMML file as well. In general, the default values and the
missing values should be given as a vector, each element of
the vector corresponding to the element at the same index in
the list. If these values are not given as a vector, they will
be used for the first list element only.
audit_box <- xform_map(audit_box,

xform_info = t, default_value = c(3),
map_missing_to = "2"

)

check what the pmml looks like
fit <- lm(Adjusted ~ ., data = audit_box$data)
fit_pmml <- pmml(fit, transforms = audit_box)

xform_min_max Normalize continuous values in accordance with the PMML element
NormContinuous.

Description

Normalize continuous values in accordance with the PMML element NormContinuous.

Usage

xform_min_max(wrap_object, xform_info = NA, map_missing_to = NA, ...)

68 xform_min_max

Arguments

wrap_object Output of xform_wrap or another transformation function.

xform_info Specification of details of the transformation.

map_missing_to Value to be given to the transformed variable if the value of the input variable is
missing.

... Further arguments passed to or from other methods.

Details

Given input data in a xform_wrap format, normalize the given data values to lie between provided
limits.

Given an input variable named InputVar, the name of the transformed variable OutputVar, the
desired minimum value the transformed variable may have low_limit, the desired maximum value
the transformed variable may have high_limit, and the desired value of the transformed variable
if the input variable value is missing missingVal, the xform_min_max command including all the
optional parameters is in the format:

formInfo = "InputVar -> OutputVar[low_limit,high_limit]"
map_missing_to = "missingVal"

There are two ways to refer to variables. The first way is to use the variable’s column number; given
the data attribute of the boxData object, this would be the order at which the variable appears. This
can be indicated in the format "column#". The second way is to refer to the variable by its name.

The name of the transformed variable is optional; if the name is not provided, the transformed
variable is given the name: "derived_" + original_variable_name. Similarly, the low and high limit
values are optional; they have the default values of 0 and 1 respectively. missingValue is an optional
parameter as well. It is the value of the derived variable if the input value is missing.

If no input variable names are provided, by default all numeric variables are transformed. Note that
in this case a replacement value for missing input values cannot be specified; the same applies to
the low_limit and high_limit parameters.

Value

R object containing the raw data, the transformed data and data statistics.

Author(s)

Tridivesh Jena

See Also

xform_wrap

xform_norm_discrete 69

Examples

Load the standard iris dataset:
data(iris)

First wrap the data:
iris_box <- xform_wrap(iris)

Normalize all numeric variables of the loaded iris dataset to lie
between 0 and 1. These would normalize "Sepal.Length", "Sepal.Width",
"Petal.Length", "Petal.Width" to the 4 new derived variables named
derived_Sepal.Length, derived_Sepal.Width, derived_Petal.Length,
derived_Petal.Width.
iris_box_1 <- xform_min_max(iris_box)

Normalize the 1st column values of the dataset (Sepal.Length) to lie
between 0 and 1 and give the derived variable the name "dsl".
iris_box_1 <- xform_min_max(iris_box, xform_info = "column1 -> dsl")

Repeat the above operation; adding the new transformed variable to
the iris_box object.
iris_box <- xform_min_max(iris_box, xform_info = "column1 -> dsl")

Transform Sepal.Width(the 2nd column).
The new transformed variable will be given the default name
"derived_Sepal.Width".
iris_box_3 <- xform_min_max(iris_box, xform_info = "column2")

Repeat the same operation as above, this time using the variable name.
iris_box_4 <- xform_min_max(iris_box, xform_info = "Sepal.Width")

Repeat the same operation as above, now assigning the transformed variable,
"derived_Sepal.Width", the value of 0.5 if the input value of the
"Sepal.Width" variable is missing.
iris_box_5 <- xform_min_max(iris_box, xform_info = "Sepal.Width", "map_missing_to=0.5")

Transform Sepal.Width(the 2nd column) to lie between 2 and 3.
The new transformed variable will be given the default name
"derived_Sepal.Width".
iris_box_6 <- xform_min_max(iris_box, xform_info = "column2->[2,3]")

Repeat the above transformation, this time the transformed variable
lies between 0 and 10.
iris_box_7 <- xform_min_max(iris_box, xform_info = "column2->[,10]")

xform_norm_discrete Normalize discrete values in accordance with the PMML element Nor-
mDiscrete.

Description

Normalize discrete values in accordance with the PMML element NormDiscrete.

70 xform_norm_discrete

Usage

xform_norm_discrete(
wrap_object,
xform_info = NA,
input_var = NA,
map_missing_to = NA,
...

)

Arguments

wrap_object Output of xform_wrap or another transformation function.
xform_info Specification of details of the transformation: the name of the input variable to

be transformed.
input_var The input variable name in the data on which the transformation is to be applied.
map_missing_to Value to be given to the transformed variable if the value of the input variable is

missing.
... Further arguments passed to or from other methods.

Details

Define a new derived variable for each possible value of a categorical variable. Given a categorical
variable catVar with possible discrete values A and B, this will create 2 derived variables catVar_A
and catVar_B. If, for example, the input value of catVar is A then catVar_A equals 1 and catVar_B
equals 0.

Given an input variable, input_var and missingVal, the desired value of the transformed variable
if the input variable value is missing, the xform_norm_discrete command including all optional
parameters is in the format:

xform_info="input_var=input_variable, map_missing_to=missingVal"

There are two methods in which the input variable can be referred to. The first method is to use its
column number; given the data attribute of the boxData object, this would be the order at which
the variable appears. This can be indicated in the format "column#". The second method is to refer
to the variable by its name.

The xform_info and input_var parameters provide the same information. While either one may be
used when using this function, at least one of them is required. If both parameters are given, the
input_var parameter is used as the default.

The output of this transformation is a set of transformed variables, one for each possible value of
the input variable. For example, given possible values of the input variable val1, val2, ... these
transformed variables are by default named input_var_val1, input_var_val2, ...

Value

R object containing the raw data, the transformed data and data statistics.

Author(s)

Tridivesh Jena

xform_wrap 71

See Also

xform_wrap

Examples

Load the standard iris dataset, already available in R
data(iris)

First wrap the data
iris_box <- xform_wrap(iris)

Discretize the "Species" variable. This will find all possible
values of the "Species" variable and define new variables. The
parameter name used here should be replaced by the new preferred
parameter name as shown in the next example below.
#
"Species_setosa" such that it is 1 if
"Species" equals "setosa", else 0;
"Species_versicolor" such that it is 1 if
"Species" equals "versicolor", else 0;
"Species_virginica" such that it is 1 if
"Species" equals "virginica", else 0

iris_box <- xform_norm_discrete(iris_box, input_var = "Species")

Exact same operation performed with a different parameter name.
Use of this new parameter is the preferred method as the previous
parameter will be deprecated soon.

iris_box <- xform_wrap(iris)
iris_box <- xform_norm_discrete(iris_box, xform_info = "Species")

xform_wrap Wrap data in a data transformations object.

Description

Wrap data in a data transformations object.

Usage

xform_wrap(data, use_matrix = FALSE)

Arguments

data The raw data set.

use_matrix Boolean value indicating whether data should be stored in matrix format as well.

72 xform_z_score

Details

Wrap raw data read in an R object. This object can then be passed to various transform functions,
and the data in it transformed.

The object consists of the data itself and various properties for each data variable. Since the data
is not always required to be in matrix format as well as a data frame, the ’use_matrix’ value lets
the user decide if the data should be stored in both formats, giving the user a choice in reducing the
speed of the transformation operations and the memory required. If there is not enough information
about the data, they are given default values; the data is assumed to be the original data of data
type string. The variable names are assumed to be X1, X2, ... This information is then used by the
transformation functions to calculate the derived variable values.

Value

An R object containing information on the data to be transformed.

Author(s)

Tridivesh Jena

See Also

pmml

Examples

Load the standard iris dataset
data(iris)

Make a object for the iris dataset to use with
transformation functions
iris_box <- xform_wrap(iris)

Output only the transformations in PMML format.
This example will output just an empty "LocalTransformations"
element as no transformations were performed.
trans_pmml <- pmml(NULL, transforms = iris_box)

The following will also work
trans_pmml_2 <- pmml(, transforms = iris_box)

xform_z_score Perform a z-score normalization on continuous values in accordance
with the PMML element NormContinuous.

Description

Perform a z-score normalization on continuous values in accordance with the PMML element
NormContinuous.

xform_z_score 73

Usage

xform_z_score(wrap_object, xform_info = NA, map_missing_to = NA, ...)

Arguments

wrap_object Output of xform_wrap or another transformation function.

xform_info Specification of details of the transformation.

map_missing_to Value to be given to the transformed variable if the value of the input variable is
missing.

... Further arguments passed to or from other methods.

Details

Perform a z-score normalization on data given in xform_wrap format.

Given an input variable named InputVar, the name of the transformed variable OutputVar, and
the desired value of the transformed variable if the input variable value is missing missingVal, the
xform_z_score command including all the optional parameters is:

xform_info="InputVar -> OutputVar", map_missing_to="missingVal"

Two methods can be used to refer to the variables. The first method is to use its column number;
given the data attribute of the boxData object, this would be the order at which the variable appears.
This can be indicated in the format "column#". The second method is to refer to the variable by its
name.

The name of the transformed variable is optional; if the name is not provided, the transformed
variable is given the name: "derived_" + original_variable_name

missingValue, an optional parameter, is the value to be given to the output variable if the input
variable value is missing. If no input variable names are provided, by default all numeric variables
are transformed. Note that in this case a replacement value for missing input values cannot be
specified.

Value

R object containing the raw data, the transformed data and data statistics.

Author(s)

Tridivesh Jena

See Also

xform_wrap

Examples

Load the standard iris dataset
data(iris)

74 xform_z_score

First wrap the data
iris_box <- xform_wrap(iris)

Perform a z-transform on all numeric variables of the loaded
iris dataset. These would be Sepal.Length, Sepal.Width,
Petal.Length, and Petal.Width. The 4 new derived variables
will be named derived_Sepal.Length, derived_Sepal.Width,
derived_Petal.Length, and derived_Petal.Width
iris_box_1 <- xform_z_score(iris_box)

Perform a z-transform on the 1st column of the dataset (Sepal.Length)
and give the derived variable the name "dsl"
iris_box_2 <- xform_z_score(iris_box, xform_info = "column1 -> dsl")

Repeat the above operation; adding the new transformed variable
to the iris_box object
iris_box <- xform_z_score(iris_box, xform_info = "column1 -> dsl")

Transform Sepal.Width(the 2nd column)
The new transformed variable will be given the default name
"derived_Sepal.Width"
iris_box_3 <- xform_z_score(iris_box, xform_info = "column2")

Repeat the same operation as above, this time using the variable
name
iris_box_4 <- xform_z_score(iris_box, xform_info = "Sepal.Width")

Repeat the same operation as above, assign the transformed variable
"derived_Sepal.Width". The value of 1.0 if the input value of the
"Sepal.Width" variable is missing. Add the new information to the
iris_box object.
iris_box <- xform_z_score(iris_box,

xform_info = "Sepal.Width",
"map_missing_to=1.0"

)

Index

∗ datasets
audit, 12
houseVotes84, 16

∗ interface
add_attributes, 3
add_data_field_attributes, 4
add_data_field_children, 7
add_mining_field_attributes, 8
file_to_xml_node, 13
save_pmml, 58

∗ manip
rename_wrap_var, 57
xform_discretize, 59
xform_map, 64
xform_min_max, 67
xform_norm_discrete, 69
xform_z_score, 72

∗ methods
rename_wrap_var, 57
xform_z_score, 72

∗ utilities
rename_wrap_var, 57
xform_z_score, 72

add_attributes, 3
add_data_field_attributes, 4
add_data_field_children, 7, 17, 19
add_mining_field_attributes, 8
add_output_field, 10
audit, 12

file_to_xml_node, 13
function_to_pmml, 14

houseVotes84, 16

make_intervals, 17, 19
make_output_nodes, 18
make_values, 17, 19

pmml, 20, 36, 44, 53, 56, 66, 72

pmml.ada, 21, 22
pmml.ARIMA, 24
pmml.coxph, 21, 26
pmml.cv.glmnet, 21, 27
pmml.gbm, 29
pmml.glm, 21, 31
pmml.hclust, 21, 32
pmml.iForest, 34
pmml.itemsets (pmml.rules), 50
pmml.kmeans, 21, 36
pmml.ksvm, 21, 38
pmml.lm, 21, 39
pmml.multinom, 21, 40
pmml.naiveBayes, 21, 42
pmml.neighbr, 21, 43
pmml.nnet, 21, 46
pmml.randomForest, 47
pmml.rpart, 21, 49
pmml.rules, 21, 50
pmml.svm, 21, 51
pmml.xgb.Booster, 21, 54

rename_wrap_var, 57

save_pmml, 58

xform_discretize, 59
xform_function, 63
xform_map, 64
xform_min_max, 67
xform_norm_discrete, 69
xform_wrap, 58, 61, 64, 66, 68, 71, 71, 73
xform_z_score, 72

75

	add_attributes
	add_data_field_attributes
	add_data_field_children
	add_mining_field_attributes
	add_output_field
	audit
	file_to_xml_node
	function_to_pmml
	houseVotes84
	make_intervals
	make_output_nodes
	make_values
	pmml
	pmml.ada
	pmml.ARIMA
	pmml.coxph
	pmml.cv.glmnet
	pmml.gbm
	pmml.glm
	pmml.hclust
	pmml.iForest
	pmml.kmeans
	pmml.ksvm
	pmml.lm
	pmml.multinom
	pmml.naiveBayes
	pmml.neighbr
	pmml.nnet
	pmml.randomForest
	pmml.rpart
	pmml.rules
	pmml.svm
	pmml.xgb.Booster
	rename_wrap_var
	save_pmml
	xform_discretize
	xform_function
	xform_map
	xform_min_max
	xform_norm_discrete
	xform_wrap
	xform_z_score
	Index

