Package ‘mvnfast’

February 23, 2023

Type Package

Title Fast Multivariate Normal and Student's t Methods
Version 0.2.8

Date 2023-02-20

Maintainer Matteo Fasiolo <matteo.fasiolo@gmail.com>

Description Provides computationally efficient tools related to the
multivariate normal and Student's t distributions. The main functionalities
are: simulating multivariate random vectors, evaluating multivariate normal or
Student's t densities and Mahalanobis distances. These tools are very efficient
thanks to the use of C++ code and of the OpenMP API.

License GPL (>=2.0)

URL https://github.com/mfasiolo/mvnfast/
Imports Rcpp

Suggests knitr, rmarkdown, testthat, mvtnorm, microbenchmark, MASS,
plyr, RhpcBLASctl

LinkingTo Rcpp, ReppArmadillo, BH
VignetteBuilder knitr

RoxygenNote 7.2.2
NeedsCompilation yes

Author Matteo Fasiolo [aut, cre],
Thijs van den Berg [ctb]

Repository CRAN
Date/Publication 2023-02-23 12:40:02 UTC

R topics documented:

https://github.com/mfasiolo/mvnfast/

2 dmixn
maha e 8
TS & v v v e e e e e e e e e e e e e e e 9
TINEXN © 0 o oot e e e e e e e e e e e e e e e e e e e 11
TINAXE . . o o o e e e e e e e e e e e 13
TINVIL . 0 oot e e e e e e e e e e e e e e e e e e 15
TINVE . o ot e e e e e e e e 17
Index 20
dmixn Fast density computation for mixture of multivariate normal distribu-
tions.
Description
Fast density computation for mixture of multivariate normal distributions.
Usage
dmixn(X, mu, sigma, w, log = FALSE, ncores = 1, isChol = FALSE, A = NULL)
Arguments

X matrix n by d where each row is a d dimensional random vector. Alternatively X
can be a d-dimensional vector.

mu an (m x d) matrix, where m is the number of mixture components.

sigma as list of m covariance matrices (d x d) on for each mixture component. Alter-
natively it can be a list of m cholesky decomposition of the covariance. In that
case isChol should be set to TRUE.

w vector of length m, containing the weights of the mixture components.

log boolean set to true the logarithm of the pdf is required.

ncores Number of cores used. The parallelization will take place only if OpenMP is
supported.

isChol boolean set to true is sigma is the cholesky decomposition of the covariance
matrix.

A an (optional) numeric matrix of dimension (m x d), which will be used to store
the evaluations of each mixture density over each mixture component. It is
useful when m and n are large and one wants to call dmixt() several times,
without reallocating memory for the whole matrix each time. NB1: A will be
modified, not copied! NB2: the element of A must be of class "numeric".

Details

NB: at the moment the parallelization does not work properly on Solaris OS when ncores>1.
Hence, dmixt () checks if the OS is Solaris and, if this the case, it imposes ncores==1.

dmixn 3

Value

A vector of length n where the i-the entry contains the pdf of the i-th random vector (i.e. the i-th
row of X).

Author(s)

Matteo Fasiolo <matteo.fasiolo@ gmail.com>.

Examples

1) Example use

Set up mixture density

mu <- matrix(c(1, 2, 10, 20), 2, 2, byrow = TRUE)

sigma <- list(diag(c(1, 10)), matrix(c(1, -0.9, -0.9, 1), 2, 2))
w <- c(0.1, 0.9)

Simulate
X <= rmixn(le4, mu, sigma, w)

Evaluate density
ds <- dmixn(X, mu, sigma, w = w)
head(ds)

#i##H# 2) More complicated example

Define mixture

set.seed(5135)

N <- 10000

d<-2

w <- rep(1, 2) / 2

mu <- matrix(c(@, @, 2, 3), 2, 2, byrow = TRUE)

sigma <- list(matrix(c(1, @, @, 2), 2, 2), matrix(c(1, -0.9, -0.9, 1), 2, 2))

Simulate random variables
X <= rmixn(N, mu, sigma, w = w, retInd = TRUE)

Plot mixture density
np <- 100
xvals <- seq(min(X[, 11), max(X[, 11), length.out = np)
yvals <- seq(min(X[, 21), max(X[, 21), length.out = np)
theGrid <- expand.grid(xvals, yvals)
theGrid <- as.matrix(theGrid)
dens <- dmixn(theGrid, mu, sigma, w = w)
plot(X, pch = '.', col = attr(X, "index")+1)
contour(x = xvals, y = yvals, z = matrix(dens, np, np),
levels = c(0.002, 0.01, 0.02, 0.04, 0.08, 0.15), add = TRUE, lwd = 2)

dmixt

dmixt

Fast density computation for mixture of multivariate Student’s t distri-
butions.

Description

Fast density computation for mixture of multivariate Student’s t distributions.

Usage

dmixt(X, mu, sigma, df, w, log = FALSE, ncores = 1, isChol = FALSE, A = NULL)

Arguments

X

mu

sigma

df

w
log

ncores

isChol

Details

matrix n by d where each row is a d dimensional random vector. Alternatively X
can be a d-dimensional vector.

an (m x d) matrix, where m is the number of mixture components.

as list of m covariance matrices (d x d) on for each mixture component. Alter-
natively it can be a list of m cholesky decomposition of the covariance. In that
case isChol should be set to TRUE.

a positive scalar representing the degrees of freedom. All the densities in the
mixture have the same df.

vector of length m, containing the weights of the mixture components.
boolean set to true the logarithm of the pdf is required.

Number of cores used. The parallelization will take place only if OpenMP is
supported.

boolean set to true is sigma is the cholesky decomposition of the covariance
matrix.

an (optional) numeric matrix of dimension (m x d), which will be used to store
the evaluations of each mixture density over each mixture component. It is
useful when m and n are large and one wants to call dmixt() several times,
without reallocating memory for the whole matrix each time. NB1: A will be
modified, not copied! NB2: the element of A must be of class "numeric".

There are many candidates for the multivariate generalization of Student’s t-distribution, here we

use the parametrization described here https://en.wikipedia.org/wiki/Multivariate_t-distribution.

NB: at the moment the parallelization does not work properly on Solaris OS when ncores>1.
Hence, dmixt () checks if the OS is Solaris and, if this the case, it imposes ncores==1.

Value

A vector of length n where the i-the entry contains the pdf of the i-th random vector (i.e. the i-th

row of X).

https://en.wikipedia.org/wiki/Multivariate_t-distribution

dmvn

Author(s)

Matteo Fasiolo <matteo.fasiolo@ gmail.com>.

Examples

1) Example use

Set up mixture density

df <- 6

mu <- matrix(c(1, 2, 10, 20), 2, 2, byrow = TRUE)

sigma <- list(diag(c(1, 10)), matrix(c(1, -0.9, -0.9, 1), 2, 2))
w <- c(0.1, 0.9)

Simulate
X <= rmixt(le4, mu, sigma, df, w)

Evaluate density
ds <- dmixt(X, mu, sigma, w = w, df = df)
head(ds)

#i##H# 2) More complicated example

Define mixture

set.seed(5135)

N <- 10000

d<-2

df = 10

w <- rep(1, 2) / 2

mu <- matrix(c(@, @, 2, 3), 2, 2, byrow = TRUE)

sigma <- list(matrix(c(1, @, @, 2), 2, 2), matrix(c(1, -0.9, -0.9, 1), 2, 2))

Simulate random variables
X <= rmixt(N, mu, sigma, w = w, df = df, retInd = TRUE)

Plot mixture density
np <- 100
xvals <- seq(min(X[, 11), max(X[, 11), length.out
yvals <- seq(min(X[, 21), max(X[, 21), length.out
theGrid <- expand.grid(xvals, yvals)
theGrid <- as.matrix(theGrid)
dens <- dmixt(theGrid, mu, sigma, w = w, df = df)
plot(X, pch = '.', col = attr(X, "index")+1)
contour(x = xvals, y = yvals, z = matrix(dens, np, np),

levels = c(0.002, 0.01, 0.02, 0.04, 0.08, 0.15), add = TRUE, lwd = 2)

np)
np)

dmvn Fast computation of the multivariate normal density.

Description

Fast computation of the multivariate normal density.

Usage

dmvn

dmvn(X, mu, sigma, log = FALSE, ncores = 1, isChol = FALSE)

Arguments

X

mu

sigma

log

ncores

isChol

Value

matrix n by d where each row is a d dimensional random vector. Alternatively X
can be a d-dimensional vector.

vector of length d, representing the mean of the distribution.

covariance matrix (d x d). Alternatively it can be the cholesky decomposition of
the covariance. In that case isChol should be set to TRUE.

boolean set to true the logarithm of the pdf is required.

Number of cores used. The parallelization will take place only if OpenMP is
supported.

boolean set to true is sigma is the cholesky decomposition of the covariance
matrix.

A vector of length n where the i-the entry contains the pdf of the i-th random vector.

Author(s)

Matteo Fasiolo <matteo.fasiolo@ gmail.com>

Examples

N <- 100

d<-5

mu <- 1:d

X <= t(t(matrix(rnorm(N*d), N, d)) + mu)

tmp <- matrix(rnorm(d+*2), d, d)

mcov <- tcrossprod(tmp, tmp) + diag(@.5, d)
myChol <- chol(mcov)

head(dmvn(X, mu, mcov), 10)
head(dmvn(X, mu, myChol, isChol = TRUE), 10)

Not run:

Performance comparison: microbenchmark does not work on all
platforms, hence we need to check whether it is installed
if("microbenchmark” %in% rownames(installed.packages())){

library(mvtnorm)

library(microbenchmark)

a <- cbind(

dmvn(X, mu, mcov),
dmvn(X, mu, myChol, isChol = TRUE),
dmvnorm(X, mu, mcov))

dmvt

Check if we get the same output as dmvnorm()

al , 11/ al, 3]
al , 21 / al, 3]

microbenchmark(dmvn(X, mu, myChol, isChol = TRUE),

dmvn(X, mu, mcov),
dmvnorm(X, mu, mcov))

detach("package:mvtnorm”, unload=TRUE)

}

End(Not run)

dmvt

Fast computation of the multivariate Student’s t density.

Description

Fast computation of the multivariate Student’s t density.

Usage

dmvt(X, mu, sigma, df, log = FALSE, ncores = 1, isChol = FALSE)

Arguments

X
mu

sigma

df
log

ncores

isChol

Details

matrix n by d where each row is a d dimensional random vector. Alternatively X
can be a d-dimensional vector.

vector of length d, representing the mean of the distribution.

scale matrix (d x d). Alternatively it can be the cholesky decomposition of the
scale matrix. In that case isChol should be set to TRUE. Notice that ff the de-
grees of freedom (the argument df) is larger than 2, the Cov (X)=sigma*df/(df-2).

a positive scalar representing the degrees of freedom.
boolean set to true the logarithm of the pdf is required.

Number of cores used. The parallelization will take place only if OpenMP is
supported.

boolean set to true is sigma is the cholesky decomposition of the covariance
matrix.

There are many candidates for the multivariate generalization of Student’s t-distribution, here we

use the parametrization described here https://en.wikipedia.org/wiki/Multivariate_t-distribution.
NB: at the moment the parallelization does not work properly on Solaris OS when ncores>1.

Hence, dmvt () checks if the OS is Solaris and, if this the case, it imposes ncores==1.

https://en.wikipedia.org/wiki/Multivariate_t-distribution

8 maha

Value

A vector of length n where the i-the entry contains the pdf of the i-th random vector.

Author(s)

Matteo Fasiolo <matteo.fasiolo@ gmail.com>

Examples

N <- 100

d<-5

mu <- 1:d

df <- 4

X <= t(t(matrix(rnorm(N*d), N, d)) + mu)
tmp <- matrix(rnorm(d*2), d, d)

mcov <- tcrossprod(tmp, tmp) + diag(@.5, d)
myChol <- chol(mcov)

head(dmvt(X, mu, mcov, df = df), 10)
head(dmvt(X, mu, myChol, df = df, isChol = TRUE), 10)

maha Fast computation of squared mahalanobis distance between all rows
of X and the vector mu with respect to sigma.

Description
Fast computation of squared mahalanobis distance between all rows of X and the vector mu with
respect to sigma.

Usage

maha(X, mu, sigma, ncores = 1, isChol = FALSE)

Arguments

X matrix n by d where each row is a d dimensional random vector. Alternatively X
can be a d-dimensional vector.

mu vector of length d, representing the central position.

sigma covariance matrix (d x d). Alternatively is can be the cholesky decomposition
of the covariance. In that case isChol should be set to TRUE.

ncores Number of cores used. The parallelization will take place only if OpenMP is
supported.

isChol boolean set to true is sigma is the cholesky decomposition of the covariance

matrix.

Value

a vector of length n where the i-the entry contains the square mahalanobis distance i-th random
vector.

Author(s)

Matteo Fasiolo <matteo.fasiolo@ gmail.com>

Examples

N <- 100

d<-5

mu <- 1:d

X <= t(t(matrix(rnorm(N*d), N, d)) + mu)
tmp <- matrix(rnorm(d*2), d, d)

mcov <- tcrossprod(tmp, tmp)

myChol <- chol(mcov)

rbind(head(maha(X, mu, mcov), 10),
head(maha(X, mu, myChol, isChol = TRUE), 10),
head(mahalanobis(X, mu, mcov), 10))

Not run:

Performance comparison: microbenchmark does not work on all
platforms, hence we need to check whether it is installed
if("microbenchmark” %in% rownames(installed.packages())){
library(microbenchmark)

a <- cbind(
maha(X, mu, mcov),
maha(X, mu, myChol, isChol = TRUE),
mahalanobis(X, mu, mcov))

Same output as mahalanobis
al , 11 / al, 3]
al , 21 / al, 3]

microbenchmark(maha(X, mu, mcov),
maha(X, mu, myChol, isChol = TRUE),
mahalanobis(X, mu, mcov))

}

End(Not run)

ms Mean-shift mode seeking algorithm

Description

Given a sample from a d-dimensional distribution, an initialization point and a bandwidth the algo-
rithm finds the nearest mode of the corresponding Gaussian kernel density.

10

Usage

ms(X, init, H,

Arguments

X

init

tol

ncores

store

Value

tol = 1e-06, ncores = 1, store = FALSE)

n by d matrix containing the data.
d-dimensional vector containing the initial point for the optimization.

Positive definite bandwidth matrix representing the covariance of each compo-
nent of the Gaussian kernel density.

Tolerance used to assess the convergence of the algorithm, which is stopped if
the absolute values of increments along all the dimensions are smaller then tol
at any iteration. Default value is 1e-6.

Number of cores used. The parallelization will take place only if OpenMP is
supported.

If FALSE only the latest iteration is returned, if TRUE the function will return a
matrix where the i-th row is the position of the algorithms at the i-th iteration.

A list where estim is a d-dimensional vector containing the last position of the algorithm, while
traj is a matrix with d-colums representing the trajectory of the algorithm along each dimension.
If store == FALSE the whole trajectory is not stored and traj = NULL.

Author(s)

Matteo Fasiolo <matteo.fasiolo@ gmail.com>.

Examples

set.seed(434)

Simulating multivariate normal data

N <- 1000
mu <- c(1, 2)

sigma <- matrix(c(1, 0.5, 0.5, 1), 2, 2)
X <= rmvn(N, mu = mu, sigma = sigma)

Plotting the true density function

steps <- 100

rangel <- seq(min(X[, 1]1), max(X[, 11), length.out = steps)
range2 <- seq(min(X[, 21), max(X[, 2]1), length.out = steps)
grid <- expand.grid(rangel, range2)

vals <- dmvn(as.matrix(grid), mu, sigma)

contour(z = matrix(vals, steps, steps), x = rangel, y = range2, xlab = "X1", ylab = "X2")
points(X[, 11, X[, 21, pch = '.")

Estimating the mode from "nrep” starting points

nrep <- 10

rmixn 11

index <- sample(1:N, nrep)
for(ii in 1:nrep) {
start <- X[index[ii], 1]
out <- ms(X, init = start, H = 0.1 * sigma, store = TRUE)
lines(out$trajl , 1], out$trajl , 21, col = 2, 1lwd = 2)
points(out$final[1], out$final[2], col = 4, pch = 3, lwd = 3) # Estimated mode (blue)

points(start[1], start[2], col = 2, pch = 3, 1lwd = 3) # ii-th starting value
3
rmixn Fast simulation of r.v.s from a mixture of multivariate normal densities
Description

Fast simulation of r.v.s from a mixture of multivariate normal densities

Usage
rmixn(
n ’
mu,
sigma,
w,
ncores = 1,
isChol = FALSE,
retInd = FALSE,
A = NULL,
kpnames = FALSE
)
Arguments
n number of random vectors to be simulated.
mu an (m x d) matrix, where m is the number of mixture components.
sigma as list of m covariance matrices (d x d) on for each mixture component. Alter-
natively it can be a list of m cholesky decomposition of the covariance. In that
case isChol should be set to TRUE.
w vector of length m, containing the weights of the mixture components.
ncores Number of cores used. The parallelization will take place only if OpenMP is
supported.
isChol boolean set to true is sigma is the cholesky decomposition of the covariance
matrix.
retInd when set to TRUE an attribute called "index" will be added to the output matrix

of random variables. This is a vector specifying to which mixture components
each random vector belongs. FALSE by default.

12 rmixn

A an (optional) numeric matrix of dimension (n x d), which will be used to store
the output random variables. It is useful when n and d are large and one wants
to call rmvn() several times, without reallocating memory for the whole matrix
each time. NB: the element of A must be of class "numeric".

kpnames if TRUE the dimensions’ names are preserved. That is, the i-th column of the
output has the same name as the i-th entry of mu or the i-th column of sigma.
kpnames==FALSE by default.

Details

Notice that this function does not use one of the Random Number Generators (RNGs) provided
by R, but one of the parallel cryptographic RNGs described in (Salmon et al., 2011). It is impor-
tant to point out that this RNG can safely be used in parallel, without risk of collisions between
parallel sequence of random numbers. The initialization of the RNG depends on R’s seed, hence
the set.seed() function can be used to obtain reproducible results. Notice though that changing
ncores causes most of the generated numbers to be different even if R’s seed is the same (see ex-
ample below). NB: at the moment the RNG does not work properly on Solaris OS when ncores>1.
Hence, rmixn() checks if the OS is Solaris and, if this the case, it imposes ncores==1.

Value

If A==NULL (default) the output is an (n x d) matrix where the i-th row is the i-th simulated vector.
If AI=NULL then the random vector are store in A, which is provided by the user, and the function
returns NULL. Notice that if retInd==TRUE an attribute called "index" will be added to A. This is a
vector specifying to which mixture components each random vector belongs.

Author(s)

Matteo Fasiolo <matteo.fasiolo@gmail.com>, C++ RNG engine by Thijs van den Berg <http://sitmo.com/>.

References

John K. Salmon, Mark A. Moraes, Ron O. Dror, and David E. Shaw (2011). Parallel Random
Numbers: As Easy as 1, 2, 3. D. E. Shaw Research, New York, NY 10036, USA.

Examples

Create mixture of two components

mu <- matrix(c(1, 2, 10, 20), 2, 2, byrow = TRUE)

sigma <- list(diag(c(1, 10)), matrix(c(1, -0.9, -0.9, 1), 2, 2))
w <- c(0.1, 0.9

Simulate
X <= rmixn(le4, mu, sigma, w, retInd = TRUE)
plot(X, pch = '.', col = attr(X, "index"))

Simulate with fixed seed
set.seed(414)
rmixn(4, mu, sigma, w)

rmixt 13

set.seed(414)
rmixn(4, mu, sigma, w)

set.seed(414)
rmixn(4, mu, sigma, w, ncores = 2) # r.v. generated on the second core are different

#i#H#H#HH# Here we create the matrix that will hold the simulated random variables upfront.
A <- matrix(NA, 4, 2)
class(A) <- "numeric” # This is important. We need the elements of A to be of class "numeric”.

set.seed(414)
rmixn(4, mu, sigma, w, ncores = 2, A = A) # This returns NULL ...

A # ... but the result is here
rmixt Fast simulation of r.v.s from a mixture of multivariate Student’s t den-
sities
Description

Fast simulation of r.v.s from a mixture of multivariate Student’s t densities

Usage

rmixt(
n)
mu,
sigma,
df,
W y
ncores = 1,
isChol = FALSE,
retInd = FALSE,
A = NULL,
kpnames = FALSE

)

Arguments

n number of random vectors to be simulated.

mu an (m x d) matrix, where m is the number of mixture components.

sigma as list of m covariance matrices (d x d) on for each mixture component. Alter-

natively it can be a list of m cholesky decomposition of the covariance. In that
case isChol should be set to TRUE.
df a positive scalar representing the degrees of freedom. All the densities in the

mixture have the same df.

14 rmixt

w vector of length m, containing the weights of the mixture components.

ncores Number of cores used. The parallelization will take place only if OpenMP is
supported.

isChol boolean set to true is sigma is the cholesky decomposition of the covariance
matrix.

retInd when set to TRUE an attribute called "index" will be added to the output matrix

of random variables. This is a vector specifying to which mixture components
each random vector belongs. FALSE by default.

A an (optional) numeric matrix of dimension (n x d), which will be used to store
the output random variables. It is useful when n and d are large and one wants
to call rmvn() several times, without reallocating memory for the whole matrix
each time. NB: the element of A must be of class "numeric".

kpnames if TRUE the dimensions’ names are preserved. That is, the i-th column of the
output has the same name as the i-th entry of mu or the i-th column of sigma.
kpnames==FALSE by default.

Details

There are many candidates for the multivariate generalization of Student’s t-distribution, here we
use the parametrization described here https://en.wikipedia.org/wiki/Multivariate_t-distribution.

Notice that this function does not use one of the Random Number Generators (RNGs) provided
by R, but one of the parallel cryptographic RNGs described in (Salmon et al., 2011). It is impor-
tant to point out that this RNG can safely be used in parallel, without risk of collisions between
parallel sequence of random numbers. The initialization of the RNG depends on R’s seed, hence
the set.seed() function can be used to obtain reproducible results. Notice though that changing
ncores causes most of the generated numbers to be different even if R’s seed is the same (see ex-
ample below). NB: at the moment the parallelization does not work properly on Solaris OS when
ncores>1. Hence, rmixt () checks if the OS is Solaris and, if this the case, it imposes ncores==

Value

If A==NULL (default) the output is an (n x d) matrix where the i-th row is the i-th simulated vector.
If AI=NULL then the random vector are store in A, which is provided by the user, and the function
returns NULL. Notice that if retInd==TRUE an attribute called "index" will be added to A. This is a
vector specifying to which mixture components each random vector belongs.

Author(s)

Matteo Fasiolo <matteo.fasiolo@gmail.com>, C++ RNG engine by Thijs van den Berg <http://sitmo.com/>.

References

John K. Salmon, Mark A. Moraes, Ron O. Dror, and David E. Shaw (2011). Parallel Random
Numbers: As Easy as 1, 2, 3. D. E. Shaw Research, New York, NY 10036, USA.

https://en.wikipedia.org/wiki/Multivariate_t-distribution

rmvn 15

Examples

Create mixture of two components

df <- 6

mu <- matrix(c(1, 2, 10, 20), 2, 2, byrow = TRUE)

sigma <- list(diag(c(1, 10)), matrix(c(1, -0.9, -0.9, 1), 2, 2))
w <- c(0.1, 0.9)

Simulate
X <- rmixt(le4, mu, sigma, df, w, retInd = TRUE)
plot(X, pch = '.', col = attr(X, "index"))

Simulate with fixed seed
set.seed(414)
rmixt(4, mu, sigma, df, w)

set.seed(414)
rmixt(4, mu, sigma, df, w)

set.seed(414)
rmixt(4, mu, sigma, df, w, ncores = 2) # r.v. generated on the second core are different

#i#H##H#H# Here we create the matrix that will hold the simulated random variables upfront.
A <- matrix(NA, 4, 2)
class(A) <- "numeric"” # This is important. We need the elements of A to be of class "numeric”.

set.seed(414)
rmixt(4, mu, sigma, df, w, ncores = 2, A = A) # This returns NULL ...

A # ... but the result is here
rmvn Fast simulation of multivariate normal random variables
Description

Fast simulation of multivariate normal random variables

Usage

rmvn(n, mu, sigma, ncores = 1, isChol = FALSE, A = NULL, kpnames = FALSE)

Arguments
n number of random vectors to be simulated.
mu vector of length d, representing the mean.
sigma covariance matrix (d x d). Alternatively is can be the cholesky decomposition

of the covariance. In that case isChol should be set to TRUE.

16 rmvn

ncores Number of cores used. The parallelization will take place only if OpenMP is
supported.

isChol boolean set to true is sigma is the cholesky decomposition of the covariance
matrix.

A an (optional) numeric matrix of dimension (n x d), which will be used to store

the output random variables. It is useful when n and d are large and one wants
to call rmvn() several times, without reallocating memory for the whole matrix
each time. NB: the element of A must be of class "numeric".

kpnames if TRUE the dimensions’ names are preserved. That is, the i-th column of the
output has the same name as the i-th entry of mu or the i-th column of sigma.
kpnames==FALSE by default.

Details

Notice that this function does not use one of the Random Number Generators (RNGs) provided
by R, but one of the parallel cryptographic RNGs described in (Salmon et al., 2011). It is impor-
tant to point out that this RNG can safely be used in parallel, without risk of collisions between
parallel sequence of random numbers. The initialization of the RNG depends on R’s seed, hence
the set.seed() function can be used to obtain reproducible results. Notice though that changing
ncores causes most of the generated numbers to be different even if R’s seed is the same (see ex-
ample below). NB: at the moment the RNG does not work properly on Solaris OS when ncores>1.
Hence, rmvn () checks if the OS is Solaris and, if this the case, it imposes ncores==1.

Value

If A==NULL (default) the output is an (n x d) matrix where the i-th row is the i-th simulated vector.
If A!=NULL then the random vector are store in A, which is provided by the user, and the function
returns NULL.

Author(s)

Matteo Fasiolo <matteo.fasiolo@ gmail.com>, C++ RNG engine by Thijs van den Berg <http://sitmo.com/>.

References

John K. Salmon, Mark A. Moraes, Ron O. Dror, and David E. Shaw (2011). Parallel Random
Numbers: As Easy as 1, 2, 3. D. E. Shaw Research, New York, NY 10036, USA.

Examples

d<-5
mu <- 1:d

Creating covariance matrix
tmp <- matrix(rnorm(d*2), d, d)
mcov <- tcrossprod(tmp, tmp)

set.seed(414)
rmvn(4, 1:d, mcov)

rmvt 17

set.seed(414)
rmvn(4, 1:d, mcov)

set.seed(414)
rmvn(4, 1:d, mcov, ncores = 2) # r.v. generated on the second core are different

#it#HH# Here we create the matrix that will hold the simulated random variables upfront.
A <- matrix(NA, 4, d)
class(A) <- "numeric"” # This is important. We need the elements of A to be of class "numeric”.

set.seed(414)
rmvn(4, 1:d, mcov, ncores = 2, A = A) # This returns NULL ...

A # ... but the result is here
rmvt Fast simulation of multivariate Student’s t random variables
Description

Fast simulation of multivariate Student’s t random variables

Usage

rmvt(n, mu, sigma, df, ncores = 1, isChol = FALSE, A = NULL, kpnames = FALSE)

Arguments

n number of random vectors to be simulated.

mu vector of length d, representing the mean of the distribution.

sigma scale matrix (d x d). Alternatively it can be the cholesky decomposition of the
scale matrix. In that case isChol should be set to TRUE. Notice that ff the de-
grees of freedom (the argument df) is larger than 2, the Cov(X)=sigma*df/(df-2).

df a positive scalar representing the degrees of freedom.

ncores Number of cores used. The parallelization will take place only if OpenMP is
supported.

isChol boolean set to true is sigma is the cholesky decomposition of the covariance
matrix.

A an (optional) numeric matrix of dimension (n x d), which will be used to store
the output random variables. It is useful when n and d are large and one wants
to call rmvn() several times, without reallocating memory for the whole matrix
each time. NB: the element of A must be of class "numeric".

kpnames if TRUE the dimensions’ names are preserved. That is, the i-th column of the

output has the same name as the i-th entry of mu or the i-th column of sigma.
kpnames==FALSE by default.

18 rmvt

Details

There are in fact many candidates for the multivariate generalization of Student’s t-distribution, here
we use the parametrization described here https://en.wikipedia.org/wiki/Multivariate_
t-distribution.

Notice that rmvt () does not use one of the Random Number Generators (RNGs) provided by R, but
one of the parallel cryptographic RNGs described in (Salmon et al., 2011). It is important to point
out that this RNG can safely be used in parallel, without risk of collisions between parallel sequence
of random numbers. The initialization of the RNG depends on R’s seed, hence the set.seed()
function can be used to obtain reproducible results. Notice though that changing ncores causes
most of the generated numbers to be different even if R’s seed is the same (see example below).
NB: at the moment the RNG does not work properly on Solaris OS when ncores>1. Hence, rmvt ()
checks if the OS is Solaris and, if this the case, it imposes ncores==1.

Value

If A==NULL (default) the output is an (n x d) matrix where the i-th row is the i-th simulated vector.
If A!=NULL then the random vector are store in A, which is provided by the user, and the function
returns NULL.

Author(s)

Matteo Fasiolo <matteo.fasiolo@gmail.com>, C++ RNG engine by Thijs van den Berg <http://sitmo.com/>.

References

John K. Salmon, Mark A. Moraes, Ron O. Dror, and David E. Shaw (2011). Parallel Random
Numbers: As Easy as 1, 2, 3. D. E. Shaw Research, New York, NY 10036, USA.

Examples

d<-5
mu <- 1:d
df <- 4

Creating covariance matrix
tmp <- matrix(rnorm(d*2), d, d)
mcov <- tcrossprod(tmp, tmp) + diag(@.5, d)

set.seed(414)
rmvt(4, 1:d, mcov, df = df)

set.seed(414)
rmvt(4, 1:d, mcov, df = df)

set.seed(414)
rmvt(4, 1:d, mcov, df = df, ncores = 2) # These will not match the r.v. generated on a single core.

#iH##HH Here we create the matrix that will hold the simulated random variables upfront.
A <- matrix(NA, 4, d)
class(A) <- "numeric” # This is important. We need the elements of A to be of class "numeric”.

https://en.wikipedia.org/wiki/Multivariate_t-distribution
https://en.wikipedia.org/wiki/Multivariate_t-distribution

rmvt

set.seed(414)

rmvt(4, 1:d, mcov, df = df, ncores = 2, A = A) # This returns NULL ...

A # ... but the result is here

Index

dmixn, 2
dmixt, 4
dmvn, 5
dmvt, 7

maha, 8
ms, 9

rmixn, 11
rmixt, 13
rmvn, 15
rmvt, 17

20

	dmixn
	dmixt
	dmvn
	dmvt
	maha
	ms
	rmixn
	rmixt
	rmvn
	rmvt
	Index

