Package ‘adehabitatLT’

June 18, 2025
Version 0.3.29
Date 2025-06-17
Depends R (>=2.10.0), sp, methods, ade4, adehabitatMA, stats
Suggests tkrplot, MASS
Imports graphics, grDevices, utils
Title Analysis of Animal Movements

Author Clement Calenge [aut, cre],
Stephane Dray [ctb],
Manuela Royer [ctb]

Maintainer Clement Calenge <clement.calenge@ofb.gouv.fr>
Description A collection of tools for the analysis of animal movements.
VignetteBuilder utils

License GPL (>=2)

NeedsCompilation yes

Repository CRAN

Date/Publication 2025-06-17 22:40:02 UTC

Contents
acfdist.ltraj L e e 3
albatross e 4
as.dtrajo 5
bear L 10
buffalo 10
burst e e 11
cltraj e 13
capreochiz L e e 14
capreotf L L 15
Chi. e 15
CULILra] . . . o o o o e e e 17
Extract.ltraj 19

Index

Contents

Pt . e 20
gdltraj oL 22
hbrown L e 23
histltraj e 24
hseal e 25
IDEX . . e 26
IDEXIaAW e e e e e e 26
INAMOVE e e e e e e e e e e e e e e 27
ISregular e e e e e 29
1S.8d . . . e e e 30
lavielle L e e 32
Id . e 36
Itraj2spdf L 37
mindistkeep L L e e 39
modpartltraj 40
mouflon e 44
naomitltraj 45
offsetdate e e e 46
plotltraj e e e e 47
plotltr L 48
POTPOISE o v i e 49
puechcirc e e e e e 50
qachi . . . e 50
rasterize.Itraj L. L e 52
redisltraj 54
residenceTime 56
runsNAIraj o e e e 59
rupicabau L. 61
Set.IMits e e e e e 61
SEtNA . L 63
SettO . . L e e 65
simm.bb . .. e e e 67
SIMM.brown 68
SIMIMLCIW + . v v v v vt e 69
sSimmLIeVY e e e e 71
SIMMLMDA e e e e e e e e e e e e e 72
310010018 100 74
siwinltr o oL 76
subsample L e 77
teal e 78
testNM . e e 79
trajdyn e 88
typell2typel e e e 89
WaWOLESE o o e e e e e e e e 90
whale e 91
which.ltraj e 92
94

acfdist.Itraj 3

acfdist.ltraj Compute correlogram for angular and linear descriptors of a move-
ment path

Description

The functions acfdist.1ltraj and acfang.1ltraj compute (and by default plot) a correlogram-like
function .

Usage

acfdist.ltraj(x, which = c("dist”, "dx", "dy"), nrep = 999, lag =1,
plot = TRUE, xlab = "Lag"”, ylab = "autocorrelation")

acfang.ltraj(x, which = c("absolute”, "relative”), nrep = 999, lag =1,
plot = TRUE, xlab = "Lag", ylab = "autocorrelation”)

Arguments
X an object of the class 1traj
which to select on which parameter the autocorrelation should be computed (see de-
tails).
nrep the number of repetitions used to test the significance of autocorrelation for each
lag value.
lag maximum lag at which to calculate the autocorrelation. Default is 1.
plot logical. If "TRUE’ (the default) the autocorrelation is plotted.
xlab a title for the x axis
ylab a title for the y axis
Details

The function acfdist.ltrajis used to compute a correlogram for linear descriptors and acfang.ltraj
for angular descriptors (see as.1ltraj for a description of these descriptors).

Statistics used are defined in Dray et al. (in press). They are based on squared differences between
successive values. For angular descriptors, the statistic is based on the chord distance.

In the case of missing data, the computation of the correlograms is restricted to the pairs of suc-
cessive observed data and only observed data are permuted (i.e. the structure of the missing data is
kept constant under permutation).

The grey area represents a 95 % interval obtained after permutation of the data. If the observed data
is outside this region, it is considered as significant and represetend by a black symbol. Note that
no multiple-comparison adjustement is performed.

4 albatross

Value

A list of matrices. Each matrix corresponds to a "burst’. The matrix contains for each lag value
(column), the values of autocorrelation (observed, and the 2.5 %, 50 % and 97.5 % quantiles of for
the set of nrep permutations of values).

Author(s)

Stephane Dray <dray@biomserv.univ-lyon1.fr>

References

Dray, S., Royer-Carenzi, M. and Calenge, C. The exploratory analysis of autocorrelation in animal
movement studies. Ecological Research, in press.

Calenge, C., Dray, S. and Royer-Carenzi, M. (2009) The concept of animals trajectories from a data
analysis perspective. Ecological Informatics, 4,34-41.

See Also

as.ltraj for additional information on the class 1traj, wawotest for a simple test of the autocor-
relation of the descriptive parameters on the trajectory.

Examples

Not run:

data(puechcirc)

puechcirc
acfang.ltraj(puechcirc, lag=5)
acfdist.ltraj(puechcirc, lag=5)

End(Not run)

albatross Argos Monitoring of Adult Albatross Movement

Description
This data set contains the relocations of 6 adult albatross monitored in the Crozets Islands by the
team of H. Weimerskirch from the CEBC-CNRS (Centre d’Etudes Biologiques de Chize, France).
Usage

data(albatross)

Format

This data set is an object of class 1traj.

as.Itraj 5

Details

The coordinates are given in meters (UTM - zone 42).

Source

http://suivi-animal.u-strasbg.fr/index.htm

Examples

data(albatross)

plot(albatross)

as.ltraj Working with Trajectories in 2D Space: the Class ltraj

Description

The class 1traj is intended to store trajectories of animals. Trajectories of type II correspond to
trajectories for which the time is available for each relocation (mainly GPS and radio-tracking).
Trajectories of type I correspond to trajectories for which the time has not been recorded (e.g.
sampling of tracks in the snow).

as.ltraj creates an object of this class.

summary.ltraj returns the number of relocations (and missing values) for each "burst" of reloca-
tions and each animal.

rec recalculates the descriptive parameters of an object of class Itraj (e.g. after a modification of
the contents of this object, see examples)

Usage

as.ltraj(xy, date, id, burst = id, typeIl = TRUE,
slsp = c("remove”, "missing"),
infolocs = data.frame(pkey = paste(id, date, sep="."),
row.names=row.names(xy)),
proj4string = CRS())
S3 method for class 'ltraj'

print(x, ...)
S3 method for class 'ltraj'
summary (object, ...)

rec(x, slsp = c("remove”, "missing"))

6 as.ltraj

Arguments
X, object an object of class 1traj
Xy a data.frame containing the x and y coordinates of the relocations
date for trajectories of type II, a vector of class POSIXct giving the date for each
relocation. For trajectories of type I, this argument is not taken into account.
id either a character string indicating the identity of the animal or a factor with
length equal to nrow(xy)
burst either a character string indicating the identity of the burst of relocations or a
factor with length equal to nrow(xy)
typell logical. TRUE indicates a trajectory of type II (time recorded, e.g. radio-tracking),
whereas FALSE indicates a trajectory of type I (time not recorded, e.g. sampling
of tracks in the snow)
slsp a character string used for the computation of the turning angles (see details)
infolocs if not NULL, a data frame containing additionnal information on the relocations
(e.g., precision). By default, a primary key is generated.
proj4string an object of class CRS storing the projection information of the relocations.
For other functions, arguments to be passed to the generic functions summary
and print
Details

Objects of class 1traj allow the analysis of animal movements. They contain the descriptive pa-
rameters of the moves generally used in such studies (coordinates of the relocations, date, time lag,
relative and absolute angles, length of moves, increases in the x and y direction, and dispersion R2n,
see below), as well as optionally metadata on the relocations (precision, etc.).

The computation of turning angles may be problematic when successive relocations are located at
the same place. In such cases, at least one missing value is returned. For example, let rl, r2, r3
and r4 be 4 successive relocations of a given animal (with coordinates (x1,y1), (x2,y2), etc.). The
turning angle in r2 is computed between the moves r1-12 and 12-r3. If 12 = r3, then a missing value
is returned for the turning angle at relocation r2. The argument s1sp controls the value returned for

relocation 13 in such cases. If slsp == "missing”, a missing value is returned also for the relocation
r3. If slsp == "remove”, the turning angle computed in r3 is the angle between the moves rl-r2
and r3-r4.

For a given individual, trajectories are often sampled as "bursts" of relocations. For example, when
an animal is monitored using radio-tracking, the data may consist of several circuits of activity (two
successive relocations on one circuit are often highly autocorrelated, but the data from two circuits
may be sampled at long intervals in time). These bursts are indicated by the attribute burst. Note
that the bursts should be unique: do not use the same burst id for bursts collected on different
animals.

Two types of trajectories can be stored in objects of class 1traj: trajectories of type I correspond to
trajectories where the time of relocations is not recorded. It may be because it could not be noted at
the time of sampling (e.g. sampling of animals’ tracks in the snow) or because the analyst decided
that he did not want to take it into account, i.e. to study only its geometrical properties. In this
case, the variable date in each burst of the object contains a vector of integer giving the order of

as.Itraj 7

the relocations in the trajectory (i.e. 1, 2, 3, ...). Trajectories of type II correspond to trajectories
for which the time is available for each relocation. It is stored as a vector of class POSIXct in the
column date of each burst of relocations. The type of trajectory should be defined when the object
of class 1traj is defined, with the argument typeIl. Note that the time zone of dates in objects of
type I should be the same for all bursts (this is checked by the functions of adehabitatLT).

Concerning trajectories of type I, in theory, it is expected that the time lag between two relocations
is constant in all the bursts and all the ids of one object of class 1traj (don’t mix animals located
every 10 minutes and animals located every day in the same object). Indeed, some of the descriptive
parameters of the trajectory do not have any sense when the time lag varies. For example, the
distribution of relative angles (angles between successive moves) depends on a given time scale;
the angle between two during 10-min moves of a whitestork does not have the same biological
meaning as the angle between two 1-day move. If the time lag varies, the underlying process varies
too. For this reason, most functions of adehabitatLT have been developed for "regular" trajectories,
i.e. trajectories with a constant time lag (see help(sett®@)). Furthermore, several functions are
intended to help the user to transform an object of class 1traj into a regular object (see for example
help(sett®), and particularly the examples to see how regular trajectories can be obtained from
GPS data).

Nevertheless, the class 1traj allows for variable time lag, which often occur with some modes
of data collection (e.g. with Argos collars). But *we stress that their analysis is still an open
question!!*

Finally, the class 1traj deals with missing values in the trajectories. Missing values are frequent in
the trajectories of animals collected using telemetry: for example, GPS collar may not receive the
signal of the satellite at the time of relocation. Most functions dealing with the class 1traj have a
specified behavior in case of missing values.

It is recommended to store the missing values in the data *before* the creation of the object of class
ltraj. For example, the GPS data imported within R contain missing values. It is recommended to
not remove these missing values before the creation of the object!!! These missing values may
present patterns (e.g. failure to locate the animal at certain time of the day or in certain habitat
types), and *the analysis of these missing values should be part of the analysis of the trajectory*
(e.g. see help(runsNAltraj) and help(plotNAltraj).

However, sometimes, the data come without any information concerning the location of these miss-
ing values. If the trajectory is approximately regular (i.e. approximately constant time lag), it is
possible to determine where these missing values should occur in the object of class 1traj. This is
the role of the function setNA.

One word now about the attribute infolocs of the object of class 1traj. This attribute is intended
to store metadata concerning the relocations building the trajectory (the precision of the relocations,
the value of environmental variables at this place, etc.). There are constraints on the structure of
this attribute. Although any variable can be stored in this attribute, it is required that: (i) all the
relocations take a value (or a missing value) for all variables, (ii) all the variables are measured
(or correspond to missing values) for all bursts and ids. This means for example that the function
c.ltraj cannot be used to combine an object where only variable "A" is stored as metadata and
an object where only variable "B" is stored as metadata. The function removeinfo can be used
to remove this attribute. Note also that the data.frames in the list infolocs should have the same
row.names as the corresponding elements in the object of class "1traj".

Finally, note that an object of class 1traj *can* have an attribute named "proj4string”, storing
the projection information of the object. The package adehabitatLT does not manage projection

8 as.ltraj

information, but this attribute can be useful when an object of class 1traj is converted to other
classes (in particular spatial classes). Note that this attribute can be NULL (identical to a NA CRS).

Value

summary.ltraj returns a data frame.

All other functions return objects of class 1traj. An object of class 1traj is a list with one compo-
nent per burst of relocations. Each component is a data frame with two attributes and one optionnal
attribute: the attribute "id" indicates the identity of the animal, and the attribute "burst” indicates
the identity of the burst. An optional attribute "infolocs” contains any additional information
desired by the user (precision, etc.). Each main data frame stores the following columns:

X the x coordinate for each relocation
y the y coordinate for each relocation
date the date for each relocation (type II) or a vector of integer giving the order of the

relocations in the trajectory.

dx the increase of the move in the x direction. At least two successive relocations
are needed to compute dx. Missing values are returned otherwise.

dy the increase of the move in the y direction. At least two successive relocations
are needed to compute dy. Missing values are returned otherwise.

dist the length of each move. At least two successive relocations are needed to com-
pute dist. Missing values are returned otherwise.

dt the time interval between successive relocations

R2n the squared net displacement between the current relocation and the first reloca-
tion of the trajectory

abs.angle the angle between each move and the x axis. At least two successive relocations
are needed to compute abs. angle. Missing values are returned otherwise.

rel.angle the turning angles between successive moves. At least three successive reloca-
tions are needed to compute rel.angle. Missing values are returned otherwise.

Author(s)
Clement Calenge <clement.calenge@ofb.gouv.fr>
Stephane Dray <dray@biomserv.univ-lyon1.fr>
References
Calenge, C., Dray, S. and Royer, M. (2009) The concept of animals’ trajectories from a data analysis
perspective. Ecological Informatics, 4. 34—41.

See Also

is.regular and sett@ for additional information on "regular" trajectories. setNA and runsNAltraj
for additional information on missing values in trajectories. c.1ltraj to combine several objects of
class 1traj, Extract.ltraj to extract or replace bursts of relocations, plot.ltraj and trajdyn
for graphical displays, gd1traj to specify a time period.

as.Itraj

Examples

data(puechabonsp)

locs <- puechabonsp$relocs
head(locs)

xy <- coordinates(locs)

df <- as.data.frame(locs)
id <- df[,1]

HHHHHHAEEE R R
#i#t
Example of a trajectory of type I (time not recorded)

(litrI <- as.ltraj(xy, id = id, typeII=FALSE))
plot(litrI)

The components of the object of class "ltraj”
head(1litrI[[111)

HHHEHHEBEERE AR AR
##
Example of a trajectory of type II (time recorded)

Conversion of the date to the format POSIX
da <- as.character(df$Date)
da <- as.POSIXct(strptime(as.character(df$Date),"%y%m%d", tz="Europe/Paris"))

Creation of an object of class "ltraj"”, with for
example the first animal
(tr1 <- as.ltraj(xy[id=="Brock"”,],
date = dal[id=="Brock"],
id="Brock"))

The components of the object of class "ltraj”
head(tr1[[1]11)

With all animals
(litr <- as.ltraj(xy, da, id = id))

Change something manually in the first burst:
head(1litr[[1]11)
1itr[[11]03,"x"] <- 700000

Recompute the trajectory

litr <- rec(litr)

Note that descriptive statistics have changed (e.g. dx)
head(litr[[11]1)

10 buftalo

HHHEHHAREER AR R
##

Example of a trajectory of type II (time recorded)
with an infolocs attribute:

data(capreochiz)
head(capreochiz)

Create an object of class "ltraj”

cap <- as.ltraj(xy = capreochiz[,c("x","y")], date = capreochiz$date,
id = "Roe.Deer”, typelIl = TRUE,
infolocs = capreochiz[,4:81)

cap

bear GPS monitoring of one brown bear

Description
These data contain the relocations of one female brown bear monitored using GPS collars during
May 2004 in Sweden.

Usage

data(bear)

Source

Scandinavian Bear Research Project. Skandinaviska Bjornprojektet. Tackasen - Kareliusvag 2.
79498 Orsa, Sweden. email: info@bearproject.info

Examples

data(bear)
plot(bear)

buffalo GPS monitoring of a buffalo

Description

This data set contains the relocations of an African buffalo (Syncerus caffer) monitored in the W
National Park (Niger) by D. Cornelis, as well as the habitat map of the study area.

burst 11

Usage

data(buffalo)

Format

This dataset is a list containing an object of class 1traj and a SpatialPixelsDataFrame.

Details

The "infolocs" component of the ltraj stores the proportion of the time duration between relocation
i-1 and relocation i during which the animal was active.

Source

Cornelis D., Benhamou S., Janeau G., Morellet N., Ouedraogo M. & de Vissher M.-N. (submitted).
The spatiotemporal segregation of limiting resources shapes space use patterns of West African
savanna buffalo. Journal of Mammalogy.

Examples

data(buffalo)
plot(buffalo$traj, spixdf=buffalo$habitat)

burst ID, Bursts and infolocs of an Object of Class Itraj

Description

Functions to get or set the attribute "id", "burst”, and "infolocs" of the components of an object
of class 1traj.

Usage

burst(ltraj)
burst(ltraj) <- value
id(1ltraj)

id(1ltraj) <- value
infolocs(1ltraj, which)
infolocs(ltraj) <- value
removeinfo(ltraj)

burst

for the assignment functions burst and id, a character vector of up to the same
length as 1traj. For infolocs alist of data frames of the same length of 1traj
(with each component having the same number of rows as the corresponding

an optional character vector containing the names of the variables in the infolocs

12
Arguments
ltraj an object of class 1traj
value
element in 1traj).
which
attribute to be returned
Details

The functions id, burst and infolocs are accessor functions, and id<- and burst<- are replace-
ment function. removeinfo removes the attribute infolocs from the object 1traj (see the help
page of as.1traj).

Value

For id and burst, a character vector of the same length as 1traj. For infolocs, the data frame
containing the information on the relocations. removeinfo returns an object of class 1traj.

For id<- and burst<-, the updated object. (Note that the value of burst (x) <- value is that of the
assignment, value, not the return value from the left-hand side.)

Author(s)

Clement Calenge <clement.calenge@ofb.gouv.fr>

See Also

ltraj, names

Examples

data(puechcirc)
puechcirc

To see the ID and the burst
id(puechcirc)
burst(puechcirc)

Change the burst
burst(puechcirc) <- c("glou”, "toto", "titi")

puechcirc

burst(puechcirc)[2] <- "new name”
puechcirc

Change the ID

id(puechcirc)[id(puechcirc)=="CH93"] <- "WILD BOAR"

c.Itraj 13

puechcirc

example of an object with an attribute "infolocs”
data(capreochiz)
head(capreochiz)

Create an object of class "ltraj"

cap <- as.ltraj(xy = capreochiz[,c("x","y")], date = capreochiz$date,
id = "Roe.Deer”, typelIl = TRUE,
infolocs = capreochiz[,4:8])

cap

cap2 <- removeinfo(cap)

cap2

infolocs(cap)

c.ltraj Combine Bursts of Relocations in Objects of Class "ltraj"

Description

This function combines several objects of class 1traj.

Usage
S3 method for class 'ltraj'
c(...)
Arguments
objects of class 1traj to be combined
Value

An object of class 1traj.

Author(s)

Clement Calenge <clement.calenge@ofb.gouv.fr>

See Also

ltraj for further information on the class 1traj, Extract.ltraj to extract or replace bursts of
relocations, plot.1ltraj and trajdyn for graphical displays, gdltraj to specify a time period

14 capreochiz

Examples
data(puechcirc)

(i <- puechcirc[1])
(j <- puechcirc[3])

(toto <- c¢(i,3))

capreochiz GPS Monitoring of one Roe Deer in Chize (France)

Description

This dataset contains the relocations of a roe deer collected using GPS collars in the Chize reserve
(Deux-Sevres, France) by the ONCFS (Office national de la chasse et de la faune sauvage).

Usage

data(capreochiz)

Format

This dataset is a data.frame containing the relocations and metadata on these relocations (DOP,
status, etc.).

Source

Sonia Said, Office national de la chasse et de la faune sauvage, CNERA-CS, 1 place Exelmans,
55000 Bar-le-Duc (France).

Examples
data(capreochiz)

head(capreochiz)

capreotf 15

capreotf GPS Monitoring of one Roe Deer in Trois-Fontaines (France)

Description

This dataset contains the relocations of a roe deer collected from May 1st to May 4th 2004 (every 5
minutes) using GPS collars in the wildlife reserve of Trois-Fontaines (Haute Marne, France) by the
ONCEFS (Office national de la chasse et de la faune sauvage).

Usage

data(capreotf)

Format

This dataset is a regular object of class 1traj (i.e. constant time lag).

Source
Sonia Said, Office national de la chasse et de la faune sauvage, CNERA-CS, 1 place Exelmans,

55000 Bar-le-Duc (France).

Examples

data(capreotf)

plot(capreotf)

Chi The Chi Distribution

Description

Density, distribution function, quantile function and random generation for the chi distribution with
df degrees of freedom.

Usage
dchi(x, df = 2)
pchi(q, df = 2, lower.tail = TRUE, ...)
gchi(p, df = 2, lower.tail = TRUE)

rchi(n, df = 2)

16 Chi

Arguments
X, q vector of quantiles.
p vector of probabilities.
number of observations. If length(n) > 1, the length is taken to be the number
required.
df degrees of freedom (non-negative, but can be non-integer).
lower.tail logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x].
additional arguments to be passed to the function integrate.
Details

The chi distribution with df = n > 0 degrees of freedom has density

(=2)

ful(x) =217/ 27 " e™2 /T (n/2)

for x > 0. This distribution is used to describe the square root of a variable distributed according to
a chi-square distribution.

Value

dchi gives the density, pchi gives the distribution function, qchi gives the quantile function, and
rchi generates random deviates.

Author(s)

Clement Calenge <clement.calenge@ofb.gouv.fr>

References

Evans, M., Hastings, N. and Peacock, B. (2000) Statistical Distributions, 3rd ed. Wiley, New York.

See Also

Chisquare
Examples
opar <- par(mfrow = c(2,2))
hist(rchi(100), ncla = 20, main="The Chi distribution”)

plot(tutu <- seq(@, 5, length=20), dchi(tutu, df = 2), xlab = "x",
ylab = "probability density”, type = "1")

plot(tutu, pchi(tutu), xlab = "x", ylab = "Repartition function”,
type = Nlll)

par(opar)

cutltraj 17

cutltraj Split Trajectories into Several Bursts

Description
The function cutltraj split the bursts in an object of class 1traj into several "sub-bursts", accord-
ing to some specified criterion.

The function bindltraj binds the bursts an object of class 1traj with the same attributes "id"
into one unique burst.

Usage
cutltraj(ltraj, criterion, value.NA = FALSE, nextr = TRUE, ...)
bindltraj(ltraj, ...)
Arguments
ltraj an object of class 1traj
criterion a character string giving any syntactically correct R logical expression implying
the descriptive parameters in x
value.NA logical. The value that should be used to replace the missing values.
nextr logical. Whether the current "sub-burst" should stop after (nextr = TRUE) or
before (nextr = FALSE) the first relocation matching criterion
additional arguments to be passed to other functions
Details

Splitting a trajectory may be of interest in many situations. For example, if it is known that two
kinds of activities of the monitored animals correspond to different properties of, say, the distance
between successive relocations, it may be of interest to split the trajectory according to the values
of these distances.

The criterion used to cut the trajectory may imply any of the parameters describing a trajectory in
the object 1traj (e.g., "dt"”, "dist”, "dx", etc. see the help page of as.ltraj), as well as any
variable stored in the attribute "infolocs” of the object.

Two options are available in cutltraj, depending on the value of nextr. If nextr = FALSE, any se-
quence of successive relocations that *do not* match the criterion is considered as a new burst. For
example, if for a given burst, the criterion returns the vector (FALSE, FALSE, FALSE, TRUE, TRUE,
TRUE, FALSE, FALSE, FALSE), then the function cutltraj creates two new bursts of relocations,
the first one containing the first 3 relocations and the second one the last 3 relocations.

If nextr = TRUE, any sequence of successive relocations that *do not* match the criterion, *as well
as the first relocation that does match it after this sequence* is considered as a new burst. This
option is available because many of the descriptive parameters associated to a given relocation in an
object of class 1traj measure some specific feature concerning the position of the next relocation.
For example, one may want to consider as a burst any sequence of relocations for which the time
lag is below one hour (the criterion is "dt > 3600". The first relocation for which this criterion is

18 cutltraj

TRUE belong to the burst, and it is the next one which is excluded from the burst. For example,
if for a given burst, the criterion returns the vector (FALSE, FALSE, FALSE, TRUE, TRUE, TRUE,
FALSE, FALSE, FALSE), then the function cutltraj creates two new bursts of relocations, the first
one containing the first 4 relocations and the second one the last 3 relocations.

Value

An object of class 1traj.

Author(s)

Clement Calenge <clement.calenge@ofb.gouv.fr>

See Also

1traj for additional information about objects of class 1traj (and especially concerning the names
of the descriptive parameters that can be used in cutltraj). is.sd (especially the examples of this
help page) for other examples of use of this function

Examples

Not run:

HEHHHHHHEHEEHH A R
#H#

GPS monitoring of one bear

data(bear)

We want to study the trajectory of the day at the scale

of the day. We define one trajectory per day. The trajectory should begin
at 22H00

The following function returns TRUE if the date is comprised between

21HOQ and 22H0Q (i.e. correspond to the relocation taken at 21H30)

foo <- function(date) {
da <- as.POSIXlt(date, "UTC")
ho <- da$hour + da$min/60
return(ho>21&ho<22)

3

We cut the trajectory into bursts after the relocation taken at 21H30:

beal <- cutltraj(bear, "foo(date)”, nextr = TRUE)
bea1l

Remove the first and last burst:
bea2 <- beal[-c(1,length(beal))]

HEHHHHHHEEEEHHEEEHEHEHHHHHREEHEHEEEE RSB
##
Bind the trajectories

Extract.Itraj 19

bea3 <- bindltraj(bea2)
bea3

End(Not run)

Extract.ltraj Extract or Replace Parts of an Object of Class ltraj

Description

Extract or replace subsets of objects of class 1traj.

Usage

S3 method for class 'ltraj'
x[i, id, burst]

S3 replacement method for class 'ltraj
x[i, id, burst] <- value

Arguments
X an object of class 1traj
i numeric. The elements to extract or replace
id a character vector indicating the identity of the animals to extract or replace
burst a character vector indicating the identity of the bursts of relocations to extract or
replace
value an object of class 1traj
Details

Objects of class 1traj contain several bursts of relocations. This function subsets or replaces these
bursts, based on their indices or on the attributes id *or* burst.

When replacement is done, it is required that value and x have the same variables in attribute
infolocs (i.e., both contain the same variables or both do not contain any variable, see the help
page of as.1ltraj)

Value

An object of class 1traj.

Author(s)

Clement Calenge <clement.calenge@ofb.gouv.fr>

20 fpt

See Also

1ltraj, gdltraj

Examples

data(puechcirc)
puechcirc

Extract the second and third bursts
(toto <- puechcirc[2:3])

Extracts all bursts collected on the animal JE
puechcirc[id = "JE93"]

Replace one burst
toto[2] <- puechcirc[1]
toto

fpt Computation of the First Passage Time From Trajectories

Description

These functions compute the first passage time using trajectories of class "1traj"” of type II (time
recorded).

Usage

fpt(lt, radii, units = c(”seconds”, "hours", "days"))
varlogfpt(f, graph = TRUE)

meanfpt(f, graph = TRUE)

S3 method for class 'fipati'

plot(x, scale, warn = TRUE, ...)
Arguments
1t an object of class "1traj" of type II (time recorded)
radii a numeric vector giving the radii of the circles
units The time units of the results
f, x an object of class fipati returned by the function fpt
graph logical. Whether the results should be plotted
scale the value of the radius to be plotted
warn logical. Whether the function should warn the user when the given scale does

not correspond to possible radii available in the object of class fipati

additional arguments to be passed to the generic function plot

fpt 21

Details

The first passage time (FPT) is a parameter often used to describe the scale at which patterns occur
in a trajectory. For a given scale r, it is defined as the time required by the animals to pass through
a circle of radius r. Johnson et al. (1992) indicated that the mean first passage time scales pro-
portionately to the square of the radius of the circle for an uncorrelated random walk. They used
this property to differenciate facilitated diffusion and impeded diffusion, according to the value
of the coefficient of the linear regression log(FPT) = a * log(radius) + b. Under the hypothesis
of a random walk, a should be equal to 2 (higher for impeded diffusion, and lower for facilitated
diffusion). Note however, that the value of a converges to 2 only for large values of radius.

Fauchald & Tveraa (2003) proposed another use of the FPT. Instead of computing the mean of FPT,
they propose the use of the variance of the log(FPT). This variance should be high for scales at
which patterns occur in the trajectory (e.g. area restricted search). This method is often used to
determine the scale at which an animal seaches for food.

Value

fpt computes the FPT for each relocation and each radius, and for each animals. This function
returns an object of class "fipati”, i.e. a list with one component per animal. Each component
is a data frame with each column corresponding to a value of radii and each row corresponding
to a relocation. An object of class fipati has an attribute named "radii” corresponding to the
argument radii of the function fpt.

meanfpt and varlogfpt return a data frame giving respectively the mean FPT and the variance of
the log(FPT) for each animal (rows) and rach radius (column). These objects also have an attribute
"radii”.

Author(s)

Clement Calenge <clement.calenge@ofb.gouv.fr>

References

Johnson, A. R., Milne, B.T., & Wiens, J.A. (1992) Diffusion in fractal landscapes: simulations and
experimental studies of tenebrionid beetle movements. Ecology 73: 1968—1983.

Fauchald, P. & Tveraa, T. (2003) Using first passage time in the analysis of area restricted search
and habitat selection. Ecology 84: 282-288.

See Also

ltraj for additional information on objects of class 1traj

Examples

data(puechcirc)
i <- fpt(puechcirc, seq(300,1000, length=30))
plot(i, scale = 500, warn = FALSE)

toto <- meanfpt(i)
toto
attr(toto, "radii")

22 gdltraj

toto <- varlogfpt(i)
toto
attr(toto, "radii")

gdltraj Working with Trajectories: Specify a Time Period

Description

Gets the parts of the trajectories stored in an object of class 1traj of type II (time recorded),
corresponding to a specified time period.

Usage
gdltraj(x, min, max, type = c("POSIXct"”, "sec"”, "min", "hour", "mday",

n [l

monr7 nyearn7 ”Wday”, ”yday"))

Arguments
X an object of class 1traj of type II (time recorded)
min numeric. The beginning of the period to consider
max numeric. The end of the period to consider
type character. The time units of min and max

Details

The limits of the period to consider may correspond to any of the components of the list of class
POSIX1t (hour, day, month, etc.; see help(POSIX1t)), or to dates stored in objects of class POSIXct
(see examples). The corresponding metadata in the attribute infolocs are also returned.

Value

an object of class 1traj.

Author(s)

Clement Calenge <clement.calenge@ofb.gouv.fr>

See Also

ltraj for further information about objects of class 1traj, POSIX1t for further information about
objects of class POSIX1t

hbrown 23

Examples

data(puechcirc)
plot(puechcirc, perani = FALSE)

Gets all the relocations collected

between midnight and 3H AM

toto <- gdltraj(puechcirc, min = @, max = 3, type="hour")
plot(toto, perani = FALSE)

Gets all relocations collected between the 15th
and the 25th august 1993
lim <- as.POSIXct(strptime(c("15/08/1993", "25/08/1993"),
"%d/%m/%Y", tz="Europe/Paris"))
tutu <- gdltraj(puechcirc, min = lim[1],
max = lim[2], type="POSIXct")
plot(tutu, perani = FALSE)

hbrown Estimates the value of h for a Brownian motion

Description

hbrown estimates the scaling factor h (used in the Brownian motion, see help(simm.brown)) from
a trajectory.

Usage
hbrown(x)

Arguments

X an object of class 1traj

Value

a vector with one estimate per burst of the object of class 1traj.

Author(s)

Clement Calenge <clement.calenge@ofb.gouv.fr>

See Also

simm.brown

24 hist.Itraj

Examples

toto <- simm.brown(1:200, h=4)
hbrown(toto)

toto <- simm.brown(1:200, h=20)
hbrown(toto)

hist.1ltraj Histogram of the Descriptive Parameters of a Trajectory

Description

This function draws an histogram of any tranformation of the descriptive parameters of a trajectory
in objects of class 1traj.

Usage
S3 method for class 'ltraj'
hist(x, which = "dx/sqrt(dt)"”, ...)
Arguments
X an object of class 1traj
which a character string giving any syntactically correct R expression implying the

descriptive elements in x, or the variables in the optional attribute infolocs .

parameters to be passed to the generic function hist.

Value

a list of objects of class "histogram”

Author(s)

Clement Calenge <clement.calenge@ofb.gouv.fr>

See Also

hist, 1traj for additional information on the descriptive parameters of the trajectory, qgnorm.1ltraj
for examination of distribution.

hseal 25

Examples

Simulation of a Brownian Motion
a <- simm.brown(c(1:300, seq(301,6000,by=20)))
plot(a, addpoints = FALSE)

dx/sqrt(dt) and dy/sqrt(dt) are normally distributed (see
?qqchi)

hist(a, "dx/sqrt(dt)”, freq = FALSE)

lines(tutu <- seq(-5,5, length=50), dnorm(tutu), col="red")

hist(a, "dy/sqrt(dt)”, freq = FALSE)
lines(tutu, dnorm(tutu), col="red")

Look at the distribution of distances between

successive relocations

hist(a, "dist/sqrt(dt)"”, freq = FALSE)

lines(tutu <- seq(@,5, length=50), dchi(tutu), col="red")

hseal Argos Monitoring of Hooded Seal

Description

This data set contains the trajectory of one hooded seal.

Usage
data(hseal)

Format
The dataset hseal is an object of class 1traj. The coordinates are stored in meters (UTM - zone
21).

Source
Jonsen, I.D., Flemming, J.M. and Myers, R.A. (2005). Robust state-space modeling of animal
movement data. Ecology, 86, 2874-2880.

Examples

data(hseal)

plot(hseal)

26 ibexraw

ibex GPS Monitoring of Four Ibex in the Belledonne Mountain

Description
This dataset is an object of class "ltraj" (regular trajectory, relocations every 4 hours) containing the
GPS relocations of four ibex during 15 days in the Belledonne mountain (French Alps).

Usage

data(ibex)

Source

Office national de la chasse et de la faune sauvage, CNERA Faune de Montagne, 95 rue Pierre
Flourens, 34000 Montpellier, France.

Examples
data(ibex)
plot(ibex)
ibexraw GPS Monitoring of Four Ibex in the Belledonne Mountain (irregular
data)
Description

This dataset is an object of class "ltraj" (irregular trajectory, relocations roughly every 4 hours)
containing the raw GPS relocations of four ibex during 15 days in the Belledonne mountain (French
Alps).

Usage

data(ibexraw)

Details
This dataset is nearly the same as the dataset ibex, except that the timing of relocations has not
been rounded and the missing values have not been placed in the trajectory.

Source

Office national de la chasse et de la faune sauvage, CNERA Faune de Montagne, 95 rue Pierre
Flourens, 34000 Montpellier, France.

indmove 27

Examples

data(ibexraw)
plot(ibexraw)

indmove Testing Independence in Regular Trajectory Parameters

Description

The function indmove tests for the independence between successive components c(dx, dy) for
each burst in a regular object of class 1traj.

The function indmove.detail tests for the independence between successive dx or dy for each
burst in a regular object of class 1traj.

The function testang.ltraj tests for the independence between successive angles (relative or
absolute) for each burst in a regular object of class 1traj.

The function testdist.ltraj tests for the independence between successive distances between
successive relocations for each burst in a regular object of class 1traj.

Usage

indmove(ltr, nrep = 200, conflim = seq(@.95, 0.5, length=5),
sep = 1tr[[1]]$dt[1], units = c("seconds"”, "minutes”,
"hours"”, "days"),
plotit = TRUE)

testang.ltraj(x, which = c("absolute”, "relative"),
nrep = 999, alter = c("two-sided”,"less”,"greater"))

n o n

testdist.1ltraj(x, nrep = 999, alter = c("two-sided”,"less","greater"))

indmove.detail(x, detail=c("dx","dy"), nrep=999,
alter = c("two-sided”,"less”,"greater”))

Arguments
1tr, x an object of class 1traj
conflim a vector giving the limits of the confidence intervals to be plotted
nrep number of simulations
units a character string indicating the time units for the result
alter a character string specifying the alternative hypothesis, must be one of "greater",

"less" or "two-sided" (default)

28

indmove

which a character string indicating whether the absolute or relative angles are under
focus

detail a character string indicating whether "dx" or "dy" should be tested for indepen-
dence

plotit logical. Whether the results should be plotted on a graph

sep used in the case of variable time lag between relocations. Indicates the theoreti-
cal time lag between two relocations

Details

The function indmove randomises the order of the increments c(dx, dy) in a trajectory. The criteria
of the test is the Mean Squared Displacement (R*2_n) (Root & Kareiva 1984).

The function testang.ltraj randomises the order of the angles in a trajectory. The criteria of
the test is 2 = sum_(i=1)"*(n-1) 2x(1 - cos(angle[i+1] - angle[i])). This measure corre-
sponds to the mean squared length of the segment joining two successive angles on the trigonomet-
ric circle (see examples for an illustration).

The function testdist.1ltrajrandomises the order of the distances between successive relocations
in a trajectory. The criteria of the test is sum_(i=1)*(n-1) (dist[i+1] - dist[i])*2 (Neuman
1941, Neuman et al. 1941). The same criteria is used in indmove.detail().

Note that these functions require "regular” trajectories, i.e. trajectories for which the relocations are
separated by a constant time lag.

Finally, note that the functions testang.1ltraj and testdist.ltraj are not affected by the pres-

ence of missing values in the bursts of relocations. The function indmove may be greatly affected
by these missing values (they are removed prior to the test).

Value

indmove () returns a list with one component per burst. Each component is a list of two data frames.
The data frame Time contains the time points at which R2n is computed for the observation (first
column) and the simulations (other ones). The data frame R2n contains the values for the R2n (same
dimensions).

testang.ltraj(), testdist.ltrajand indmove.detail return lists of objects of class randtest.

Author(s)

Clement Calenge <clement.calenge@ofb.gouv.fr>
Stephane Dray <dray@biomserv.univ-lyon1.fr>

References

Root, R.B. & Kareiva, PM. (1984) The search for resources by cabbage butterflies (Pieris Rapae):
Ecological consequences and adaptive significance of markovian movements in a patchy environ-
ment. Ecology, 65: 147-165.

Neumann, J.V., Kent, R.H., Bellinson, H.R. & Hart, B.I. (1941) The mean square successive differ-
ence. Annals of Mathematical Statistics, 12: 153-162.

Neumann, J.V. (1941) Distribution of the ration of the mean square successive difference to the
variance. The Annals of Mathematical Statistics, 12: 367-395.

is.regular 29

See Also

ltraj

Examples

Not run:

theoretical independence between
br <- simm.brown(1:1000)
testang.ltraj(br)
testdist.1ltraj(br)

indmove(br)
End(Not run)

Illustration of the statistic used for the test of the independence
of the angles
opar <- par(mar = c(0,0,4,0))
plot(@,0, asp=1, xlim=c(-1, 1), ylim=c(-1, 1), ty="n", axes=FALSE,
main="Criteria f for the measure of independence between successive
angles at time i-1 and i")
box ()
symbols(@,0,circle=1, inches=FALSE, lwd=2, add=TRUE)
abline(h=0, v=0)
x <= c(cos(pi/3), cos(pi/2 + pi/4))
y <= c(sin(pi/3), sin(pi/2 + pi/4))
arrows(c(0,90), c(0,0), x, y)
lines(x,y, lwd=2, col="red")
text(Q, 0.9, expression(f*2 == 2xsum((1 - cos(alphali]-alphal[i-11)),
i==1, n-1)), col="red")
foo <- function(t, alpha)
{
xa <- sapply(seq(@, alpha, length=20), function(x) t*cos(x))
ya <- sapply(seq(@, alpha, length=20), function(x) txsin(x))
lines(xa, ya)
}
foo(0.3, pi/3)
foo(0.1, pi/2 + pi/4)
foo(0.11, pi/2 + pi/4)
text(0.34,0.18,expression(alphalil]), cex=1.5)
text(0.15,0.11,expression(alphali-1]), cex=1.5)
par(opar)

is.regular Regular Trajectories

Description

is.regular tests whether a trajectory is regular (i.e. constant time lag between successive reloca-
tions).

30 is.sd

Usage

is.regular(ltraj)

Arguments

ltraj an object of class 1traj

Value

is.regular returns a logical value

Author(s)

Clement Calenge <clement.calenge@ofb.gouv.fr>

See Also

ltraj

Examples

data(capreotf)
is.regular(capreotf)
plotltr(capreotf, "dt")

data(albatross)
is.regular(albatross)
plotltr(albatross, "dt")

is.sd Handling of Trajectories of the Same Duration

Description

is. sd tests whether the bursts of relocations in an object of class 1traj contain the same number
of relocations, and cover the same duration ("sd" = "same duration").

sd2df gets one of the descriptive parameters of a regular "sd" trajectory (e.g. "dt"”, "dist", etc.)
and returns a data frame with one relocation per row, and one burst per column.

Usage

is.sd(1ltraj)
sd2df(1traj, what)

Arguments
ltraj an object of class 1traj
what a character string indicating the descriptive parameter of the trajectory to be

exported

is.sd 31

Value

is.sd returns a logical value.
sd2df returns a data frame with one column per burst of relocations, and one row per relocation.

Author(s)

Clement Calenge <clement.calenge@ofb.gouv.fr>

See Also

set.limits for additional information about "sd" regular trajectories

Examples

Not run:
Takes the example from the help page of cutltraj (bear):
data(bear)

We want to study the trajectory of the animal at the scale

of the day. We define one trajectory per day. The trajectory should begin
at 22H00.

The following function returns TRUE if the date is comprised between

21HOQ and 22H0@ and FALSE otherwise (i.e. correspond to the

relocation taken at 21H30)

foo <- function(date) {
da <- as.POSIX1lt(date, "UTC")
ho <- da$hour + da$min/60
return(ho>21.18ho<21.9)

3

We cut the trajectory into bursts after the relocation taken at 21H30:

beal <- cutltraj(bear, "foo(date)”, nextr = TRUE)
beal

Remove the first and last burst:
bea2 <- beal[-c(1,length(beal))]

Is the resulting object "sd" ?
is.sd(bea2)

Converts to data frame:
df <- sd2df(bea2, "dist")

Plots the average distance per hour
meandi <- apply(df[-nrow(df),], 1, mean, na.rm = TRUE)
sedi <- apply(df[-nrow(df),], 1, sd, na.rm = TRUE) / sqrt(ncol(df))
plot(seq(@, 23.5, length = 47),
meandi,
ty = "b", pch = 16, xlab = "Hours (time @ = 22H00)",
ylab="Average distance covered by the bear in 30 mins”,

32 lavielle

ylim=c(0, 500))
lines(seq(@, 23.5, length = 47),

meandi+sedi, col="grey")
lines(seq(@, 23.5, length = 47),

meandi-sedi, col="grey")

End(Not run)

lavielle Segmentation of a time series using the method of Lavielle (1999,
2005)

Description

These functions allow to perform a non-parametric segmentation of a time series using the penalized
contrast method of Lavielle (1999, 2005). The function lavielle computes the contrast matrix
(i.e., the matrix used to segment the series) either from a series of observations or from an animal
trajectory. The function chooseseg can be used to estimate the number of segments building up the
trajectory. The function findpath can be used to find the limits of the segments (see Details).

Usage
lavielle(x, ...)
Default S3 method:

lavielle(x, Lmin, Kmax, 1d =1,
type = c("mean”, "var”, "meanvar"), ...)

S3 method for class 'ltraj'
lavielle(x, Lmin, Kmax, 1d = 1, which = "dist"”,

type = c("mean”, "var", "meanvar"), ...)

S3 method for class 'lavielle'
print(x, ...)

chooseseg(lav, S = 0.75, output = c("full”,"opt"),
draw = TRUE)

findpath(lav, K, plotit = TRUE)

Arguments

X for lavielle.default, a vector containing the successive observations build-
ing up the series. For lavielle.ltraj, an object of class 1traj.

lavielle 33

Lmin an integer value indicating the minimum number of observations in each seg-
ment. Should be a multiple of 1d.

Kmax an integer value indicating the maximum number of segments expected in the
series
1d an integer value indicating the resolution for the calculation of the contrast func-

tion. The contrast function will be evaluated for segments containing the obser-
vations c(1:1d), c(1:(2%1d)), c(1:(3*1d)), and all segments will necessar-
ily contain a multiple of 1d observations. Note that 1d should be set to values
greater than 1 if memory problem occur

type the type of contrast function to be used to segment the series (see Details)

which a character string giving any syntactically correct R expression implying the
descriptive elements in x or the variables in the optional attribute infolocs.

lav an object of class "lavielle”

S a value indicating the threshold in the second derivative of the contrast function

output type of output expected (see the section value)

draw a logical value indicating whether the decrease in the contrast function should
be plotted

K The number of segments

plotit a logical value indicating whether the segmentation should be plotted

additional arguments to be passed from or to other functions

Details

The method of Lavielle (1999, 2005) per se finds the best segmentation of a time series, given that
it is built by K segments. It searches the segmentation for which a contrast function (measuring
the contrast between the actual series and the segmented series) is minimized. Different contrast
functions are available measuring different aspects of the variation of the series from one segment
to the next: when type = "mean”, we suppose that only the mean of the segments varies between
segments; when type = "var", we suppose that only the variance of the segments varies between
segments; when type = "meanvar”, we suppose that both the mean and the variance varies between
segments. It is required to specify a value for the minimum number of observations Lmin in a
segment, as well as the maximum number of segments Kmax in the series.

There are several approaches to estimate the best number of segments K to partition the time series.
One possible approach is the graphical examination of the decrease of the contrast function with the
number of segments. In theory, there should be a clear "break" in the decrease of this function after
the optimal value of K. Lavielle (2005) suggested an alternative way to estimate automatically the
optimal number of segments, also relying on the presence of a "break" in the decrease of the contrast
function. He proposed to choose the last value of K for which the second derivative of a standardized
constrast function is greater than a threshold S (see Lavielle, 2005 for details). Based on numerical
experiments, he proposed to choose the value S =0.75. Note, however, that for short time series
(i.e. less than 500 observations) some simulations indicated that this value may not be optimal and
may depend on the value of Kmax, so that the graphical method is maybe more appropriate.

34 lavielle

Value

The function lavielle.default returns a list of class lavielle, with an attribute "typeseg"” set
to "default”. This list contains the following elements:

contmat The contrast matrix

sumcont The optimal contrast

matpath The matrix of the paths from the first to the last observation
Kmax The maximum number of segments

Lmin The minimum number of observations in a segment

1d the value of the resolution 1d

series The time series

The function lavielle.ltraj also returns a list of class lavielle, with an attribute "typeseg”
setto "ltraj".

The function chooseseg returns the optimal number of segments when output = "opt”, and a
dataframe containing the value of the contrast function Jk and of the second derivative D of the
standardized contrast function for each possible value of K, if output = "full".

The function findpath return a list containing vectors giving the index of the first and last obser-
vations in each segment, when the object of class "lavielle” passed as argument is characterized
by an attribute "typeseg" set to "default”. When the attribute "typeseg” is set to "1traj", this
function returns an object of class ltraj where each burst correspond to a segment.

Note

The contrast matrix is a matrix of size n*n (with n the number of observations in the series). If n is
large, memory problems may occur. In this case, setting 1d to a value greater than one will allow
to reduce the size of this matrix (i.e. it will be of size kxk, where k = floor(n/1d)). However, this
will also reduce the resolution of the segmentation, so that the segment limits will be less precisely
estimated.

Author(s)

Clement Calenge <clement.calenge@ofb.gouv.fr> The code is a C translation based on the
Matlab code of M. Lavielle

References

Lavielle, M. (1999) Detection of multiple changes in a sequence of dependent variables. Stochastic
Processes and their Applications, 83: 79—102.

Lavielle, M. (2005) Using penalized contrasts for the change-point problem. Report number 5339,
Institut national de recherche en informatique et en automatique.

lavielle

Examples

S
#H#
A simulated series

suppressWarnings(RNGversion("3.5.0"))

set.seed(129)

seri <- c(rnorm(100), rnorm(100, mean=2),
rnorm(100), rnorm(100, mean=-3),
rnorm(100), rnorm(100, mean=2))

plot(seri, ty="1", xlab="time", ylab="Series")

Segmentation:
(1 <- lavielle(seri, Lmin=10, Kmax=20))

choose the number of segments
chooseseg(l)

There is a clear break in the

decrease of the contrast function after K = 6
Moreover, Jk(6) >> 0.75 and Jk(7) << 0.75

We choose 6 segments:

fp <- findpath(l, 6)

fp

This list gives the limits of the segments
for example, to get the first segment:

seg <- 1

firstseg <- seri[fp[[seg]1[1]:fpllsegl]l2]]

AR
##
Now, changes of variance

A simulated series

suppressWarnings(RNGversion(”3.5.0"))

set.seed(129)

seri <- c(rnorm(100), rnorm(100, sd=2),
rnorm(100), rnorm(100, sd=3),
rnorm(100), rnorm(100, sd=2))

plot(seri, ty="1", xlab="time", ylab="Series")

Segmentation:
(1 <- lavielle(seri, Lmin=10, Kmax=20, type="var"))

choose the number of segments
chooseseg(1)

There is a clear break in the

decrease of the contrast function after K = 6
Moreover, Jk(6) >> 0.75 and Jk(7) << 0.75

We choose 6 segments:

36

Id

fp <- findpath(l, 6)
fp

This list gives the limits of the segments
for example, to get the first segment:

seg <- 1

firstseg <- seril[fp[[segl][1]:fplLsegl][1]]

HHHHHHHHHHEER AR AR
##
Example of segmentation of a trajectory

Show the trajectory
data(porpoise)

gus <- porpoise[1]
plot(gus)

Show the changes in the distance between
successive relocations with the time
plotltr(gus, "dist")

Segmentation of the trajectory based on these distances
lav <- lavielle(gus, Lmin=2, Kmax=20)

Choose the number of segments
chooseseg(lav)
4 segments seem a good choice

Show the partition
kk <- findpath(lav, 4)
plot(kk)

1d Quick Conversion of Objects of Class ltraj from and to Dataframes

Description

The two functions 1d and d1 are useful to quickly convert objects of class Itraj from and to dataframes.

Usage

1d(1traj)
dl(x, proj4string=CRS())

Arguments
ltraj an object of class 1traj
X an object of class data. frame, containing at least columns named x, y, date.

proj4string a valid CRS object containing the projection information.

Itraj2spdf 37

Details

The function 1d concatenates all bursts in an object of class 1traj, adds two columns named id
and burst, and, when it is present, also adds the variables in the infolocs component.

The function d1 creates an object of class 1traj from a data. frame. If no column named id exists,
arandom ID is generated. If no column named burst exists, the ID is used as burst. The columns
named "dx", "dy", "dist", "dt", "R2n", "abs.angle" and "rel.angle" are recomputed by the function
(see ?as.1ltraj). Additional columns are used as the infolocs component.

Value
1d returns an object of class data. frame.
d1 returns an object of class 1traj.

Author(s)

Clement Calenge <clement.calenge@ofb.gouv.fr>

See Also

as.ltraj for additional information about objects of class 1traj

Examples

data(puechcirc)
puechcirc ## class ltraj
uu <- ld(puechcirc)
head(uu)

dl(uu)

ltraj2spdf Conversion of the class "ltraj" to the package "sp"

Description

These functions convert the class "ltraj" available in adehabitatLT toward classes available in the
package sp.

1traj2spdf converts an object of class 1traj into an object of class SpatialPointsDataFrame.

1traj2sldf converts an object of class 1traj into an object of class SpatialLinesDataFrame.

Usage

ltraj2spdf(1tr)
ltraj2sldf(ltr, byid = FALSE)

38

Itraj2spdf

Arguments
ltr an object of class 1traj.
byid logical. If TRUE, one objects of class Lines correspond to one animal. if FALSE,
one object of class Lines correspond to one burst.
Author(s)

Clement Calenge <clement.calenge@ofb.gouv.fr>

See Also

ltraj for objects of class 1traj.

Examples

Not run:
if (require(sp)) {

HHHHHHARHEEE R

#H#

Conversion ltraj -> SpatialPointsDataFrame
##

data(puechcirc)
plot(puechcirc)

toto <- ltraj2spdf(puechcirc)
plot(toto)

A AR
##

Conversion ltraj -> SpatiallinesDataFrame
#it

toto <- ltraj2sldf(puechcirc)

plot(toto)

}

End(Not run)

mindistkeep 39

mindistkeep Detecting Absence of Movement in an Object of Class ’ltraj’

Description

Objects of class 1traj are often created with data collected using some form of telemetry (radio-
tracking, G.P.S., etc.). However, the relocations of the monitored animals are always somewhat
imprecise. The function mindistkeep considers that when the distance between two successive
relocations is lower than a given threshold distance, the animal actually does not move (and replaces
the coordinates of relocation i+1 by the coordinates of relocation 1).

Usage

mindistkeep(x, threshold)

Arguments
X An object of class 1traj
threshold The minimum distance under which is is considered that the animal does not
move
Value

An object of class 1traj

Author(s)

Clement Calenge <clement.calenge@ofb.gouv.fr>

See Also

ltraj

Examples

data(puechcirc)
plot(puechcirc)

i <- mindistkeep(puechcirc, 10)
plot(i)

40

modpartltraj

modpartltraj Segmentation of a trajectory based on Markov models

Description

These functions partition a trajectory into several segments corresponding to different behaviours

of the animal.

modpartltraj is used to generate the models to which the trajectory is compared.

bestpartmod is used to compute the optimal number of segments of the partition.

partmod.ltraj is used to partition the trajectory into npart segments. plot.partltraj can be

used to plot the results.

Usage

modpartltraj(tr, limod)
S3 method for class 'modpartltraj'
print(x, ...)

bestpartmod(mods, Km = 30, plotit = TRUE,
correction = TRUE, nrep = 100)

partmod.ltraj(tr, npart, mods, na.manage = c("prop.move”,"locf"))
S3 method for class 'partltraj'

print(x, ...)

S3 method for class 'partltraj'

plot(x, col, addpoints = TRUE, 1lwd = 2, ...)

Arguments

tr an object of class 1traj containing only one trajectory (one burst of relocation)

limod a list of syntactically correct R expression giving the models for the trajectory,
implying one or several elements in tr (see details and examples)

X, mods an object of class modpartltraj (for print.modpartltraj), partltraj (for
print.partltraj and plot.partltraj) returned respectively by the function
genmod. crw and partmod.ltraj

na.manage a character string indicating what should be done with the missing values located
between two segments. With "locf"”, the missing values are added at the end
of the first segment. With "prop.move”, the missing values are distributed at
the end of the first and the beginning of the second segment. The proportion
of missing values added at the end of the first segment correspond the relative
proportion of "internal" missing values found within the segments predicted by
the model used to predict the first segment.

npart the number of partitions of the trajectory

Km the maximum number of partitions of the trajectory

modpartltraj 41

plotit logical. Whether the results should be plotted.

correction logical. Whether the log-likelihood should be corrected (see details).

nrep logical. The number of Monte Carlo simulations used to correct the log-likelihood
for each number of segments.

col the colors to be used for the models

addpoints logical. Whether the relocations should be added to the graph

lwd the line width

additional arguments to be passed to other functions

Details

A trajectory is made of successive steps traveled by an organism in the geographical space. These
steps (the line connecting two successive relocations) can be described by a certain number of
descriptive parameters (relative angles between successive steps, length of the step, etc.). One
aim of the trajectory analysis is to identify the structure of the trajectory, i.e. the parts of the
trajectory where the steps have homogeneous properties. Indeed, an animal may have a wide variety
of behaviours (feeding, traveling, escape from a predator, etc.). As a result, partitioning a trajectory
occupies a central place in trajectory analysis.

These functions are to be used to partition a trajectory based on Markov models of animal move-
ments. For example, one may suppose that a normal distribution generated the step lengths, with
a different mean for each type of behaviour. These models and the value of their parameters are
supposed a priori by the analyst. These functions allow, based on these a priori models, to find both
the number and the limits of the segments building up the trajectory (see examples). Any model
can be supposed for any parameter of the steps (the distance, relative angles, etc.), provided that the
model is Markovian.

The rationale behind this algorithm is the following. First, the user should propose a set of model
describing the movements of the animals, in the different segments of the trajectory. For example,
the user may define two models of normal distribution for the step length, with means equal to 10
meters (i.e. a trajectory with relatively small steps) and 100 meters (i.e. a trajectory with longer
step lengths). For a given step of the trajectory, it is possible to compute the probability density that
the step has been generated by each model of the set. The function modpartltraj computes the
matrix containing the probability densities associated to each step (rows), under each model of the
set (columns). This matrix is of class modpartltraj.

Then, the user can estimate the optimal number of segments in the trajectory, given the set of a priori
models, using the function bestpartmod, taking as argument the matrix of class modpartltraj. If
correction = FALSE, this function returns the log of the probability (log-likelihood) that the tra-
jectory is actually made of K segments, with each one described by one model. The resulting graph
can be used to choose an optimal number of segment for the partition. Note that Gueguen (2009)
noted that this algorithm tends to overestimate the number of segments in a trajectory. He proposed
to correct this estimation using Monte Carlo simulations of the independence of the steps within
the trajectory. At each step of the randomization process, the order of the rows of the matrix is
randomized, and the curve of log-likelihood is computed for each number of segments, for the ran-
domized trajectory. Then, the observed log-likelihood is corrected by these simulations: for a given
number of segments, the corrected log-likelihood is equal to the observed log-likelihood minus the
simulated log-likelihood. Because there is a large number of simulations of the independence, a

42 modpartltraj

distribution of corrected log-likelihoods is available for each number of segments. The "best" num-
ber of segments is the one for which the median of the distribution of corrected log-likelihood is
maximum.

Finally, once the optimal number of segments npart has been chosen, the function partmod.1traj
can be used to compute the partition.

The mathematical rationale underlying these two functions is the following: given an optimal k-
partition of the trajectory, if the ith step of the trajectory belongs to the segment k predicted by the
model d, then either the relocation (i-1) belongs to the same segment, in which case the segment
containing (i-1) is predicted by d, or the relocation (i-1) belongs to another segment, and the other
(k-1) segments together constitute an optimal (k-1) partition of the trajectory 1-(i-1). These two
probabilities are computed recursively by the functions from the matrix of class partmodltraj,
observing that the probability of a 1-partition of the trajectory from 1 to i described by the model m
(i.e. only one segment describing the trajectory) is simply the product of the probability densities
of the steps from 1 to i under the model m. Further details can be found in Gueguen (2001, 2009).

Value

partmodltraj returns a matrix of class partmodltraj containing the probability densities of the
steps of the trajectory (rows) for each model (columns).

bestpartmod returns a list with two elements: (i) the element mk is a vector containing the values
of the log-probabilities for each number of segments (varying from 1 to Km), and (ii) the element
correction contains either "none” or a matrix containing the corrected log-likelihood for each
number of segments (rows) and each simulation of the independence (column).

partmod.ltraj returns a list of class partltraj with the following components: ltraj is an
object of class 1traj containing the segmented trajectory (one burst of relocations per segment of
the partition); stats is a list containing the following elements:

locs The number ID of the relocations starting the segments (except the last one
which ends the last segment)

Mk The value of the cumulative log-probability for the Partition (i.e. the log-probability
associated to a K-partition is equal to the log-probability associated to the (K-
1)-partition plus the log-probability associated to the Kth segment)

mod The number ID of the model chosen for each segment
which.mod the name of the model chosen for each segment
Author(s)

Clement Calenge <clement.calenge@ofb.gouv.fr>

References
Calenge, C., Gueguen, L., Royer, M. and Dray, S. (unpublished) Partitioning the trajectory of an
animal with Markov models.

Gueguen, L. (2001) Segmentation by maximal predictive partitioning according to composition
biases. Pp 32—44 in: Gascuel, O. and Sagot, M.F. (Eds.), Computational Biology, LNCS, 2066.

Gueguen, L. (2009) Computing the likelihood of sequence segmentation under Markov modelling.
Arxiv preprint arXiv:0911.3070.

modpartltraj

See Also

ltraj

Examples

Not run:
Example on the porpoise
data(porpoise)

Keep the first porpoise
gus <- porpoise[1]
plot(gus)

First test the independence of the step length
indmove(gus)
There is a lack of independence between successive distances

plots the distance according to the date
plotltr(gus, "dist")

One supposes that the distance has been generated

by normal distribution, with different means for the
different behaviours

The means of the normal distribution range from @ to
130000. We suppose a standard deviation equal to 5000:

tested.means <- round(seq(@, 130000, length = 10), @)
(limod <- as.list(paste("dnorm(dist, mean =",
tested.means,

", sd = 5000)")))

Build the probability matrix
mod <- modpartltraj(gus, limod)

computes the corrected log-likelihood for each
number of segments
bestpartmod(mod)

The best number of segments is 4. Compute the partition:
(pm <- partmod.ltraj(gus, 4, mod))
plot(pm)

Shows the partition on the distances:
plotltr(gus, "dist")

lapply(1:1length(pm$ltraj), function(i) {
lines(pm$ltrajl[i]l]$date, rep(tested.means[pm$stats$mod[i]],

nrow(pm$ltraj[[il])),
col=c("red","green","blue")[as.numeric(factor(pm$stats$mod))[il],
lwd=2)

b

44 mouflon

Computes the residuals of the partition
res <- unlist(lapply(1:length(pm$ltraj), function(i) {
pm$ltraj[[i]]$dist - rep(tested.means[pm$stats$mod[i]],
nrow(pm$ltrajl[[i]]))
1))

plot(res, ty = "1")

Test of independence of the residuals of the partition:
wawotest(res)

End(Not run)

mouflon GPS Monitoring of One Mouflon in the Caroux Mountain

Description

This dataset is an object of class "ltraj" (regular trajectory, relocations every 20 minutes) contain-
ing the GPS relocations of one mouflon during two week-ends in the Caroux mountain (South of
France).

Usage

data(mouflon)

Source

Office national de la chasse et de la faune sauvage, CNERA Faune de Montagne, 95 rue Pierre
Flourens, 34000 Montpellier, France.

Examples

data(mouflon)
plot(mouflon)

na.omit.Itraj

45

na.omit.ltraj Removes the missing values in a trajectory

Description

na.omit.ltraj can be used to remove missing relocations from a trajectory.

Usage
S3 method for class 'ltraj'
na.omit(object, ...)

Arguments
object an object of class 1traj

additionnal arguments to be passed to or from other methods

Value

An object of class 1traj

Author(s)

Clement Calenge <clement.calenge@ofb.gouv.fr>

See Also

setNA to place the missing values in the trajectory

Examples

data(puechcirc)
puechcirc

na.omit(puechcirc)

46 offsetdate

offsetdate Date Handling in an Object of Class ’ltraj’

Description

This functions allows to set an offset value from the date in an object of class 1traj of type II (time
recorded).

Usage

n

offsetdate(ltraj, offset, units = c("sec”, "min”, "hour”, "day"))

Arguments
ltraj an object of class 1traj of type II (time recorded)
offset a numeric value indicating the offset to be deducted from the date
units a character string indicating the time units for offset

Details

The use of offset is a convenient way to define reference dates in an object of class 1traj. For
example, if the animal is monitored every night, from 18HOO to 06HOO, the fact that the beginning
and the end of the monitoring do not correspond to the same day may cause difficulties to handle
the trajectory. Though these difficulties are not unsurmountable, it is often convenient to deduct an
offset to the trajectory, so that the first relocation is collected at OH and the last one at 12H0O the
same day (i.e., in this example, an offset of 18 hours).

Value

an object of class 1traj

Author(s)

Clement Calenge <clement.calenge@ofb.gouv.fr>

See Also

1traj for additional information on objects of class 1traj
Examples

data(puechcirc)

plotltr(puechcirc, "dt")

toto <- offsetdate(puechcirc, 17, "hour")

plotltr(puechcirc, "dt")

plot.Itraj

47

plot.1ltraj

Graphical Display of an Object of Class "ltraj"

Description

plot.ltraj allows various graphical displays of the trajectories.

Usage

S3 method for class 'ltraj'

plot(x, id

Arguments

X
id

burst
spixdf
spoldf
x1im

ylim
colspixdf
colspoldf

addpoints
addlines

perani

final

Author(s)

unique(unlist(lapply(x, attr, which = "id"))),

burst = unlist(lapply(x, attr, which = "burst”)), spixdf = NULL,
spoldf = NULL, xlim = NULL, ylim = NULL, colspixdf =
gray((240:1)/256), colspoldf = "green"”, addpoints = TRUE,
addlines = TRUE, perani = TRUE, final = TRUE, ...)

an object of class 1traj

a character vector containing the identity of the individuals of interest
a character vector containing the burst levels of interest

an object of class SpatialPixelsDataFrame

an object of class SpatialPolygons

the ranges to be encompassed by the x axis

the ranges to be encompassed by the y axis

a character vector giving the colors of the map spixdf

a character vector giving the colors of the polygon contour map, when spoldf
is not NULL

logical. If TRUE, points corresponding to each relocation are drawn
logical. If TRUE, points corresponding to each relocation are drawn

logical. If TRUE, one plot is drawn for each value of id, and the several bursts
are superposed on the same plot for a given animal. If FALSE, one plot is drawn
for each value of burst

logical. If TRUE, the initial and final relocations of each burst are indicated in
blue and red, respectively

arguments to be passed to the generic function plot

Clement Calenge <clement.calenge@ofb.gouv.fr>

See Also

For further information on the class 1traj, 1traj.

48 plotltr

Examples

data(puechcirc)
plot(puechcirc)

plot(puechcirc, perani = FALSE)
plot(puechcirc, id = "JE93", perani = FALSE)

data(puechabonsp)
plot(puechcirc, perani = FALSE, spixdf = puechabonsp$map[,1])

cont <- getcontour (puechabonsp$map[,1])
plot(puechcirc, spoldf = cont)

plotltr Changes in Traject Parameters Over Time

Description

This function allows a graphical examination of the changes in descriptive parameters in objects of
class 1traj

Usage

plotltr(x, which = "dist"”, pch = 16, cex = 0.7, addlines = TRUE,
addpoints = TRUE,...)

Arguments
X An object of class 1traj
which a character string giving any syntactically correct R expression implying the
descriptive elements in x or the variables in the optional attribute infolocs.
pch the type of points on the plot (see help(par)).
cex the size of points on the plot (see help(par)).
addlines logical. Indicates whether lines should be added to the plot.
addpoints logical. Indicates whether points should be added to the plot.
additional parameters to be passed to the generic function plot
Author(s)

Clement Calenge <clement.calenge@ofb.gouv.fr>

See Also

ltraj for additional information about objects of class 1traj, and sliwinltr for a sliding window
smoothing

porpoise

Examples
data(puechcirc)
plotltr(puechcirc, "cos(rel.angle)")

plotltr(puechcirc, "dist")
plotltr(puechcirc, "dx")

49

porpoise Argos monitoring of Porpoise Movements

Description

This data set contains the relocations of 3 porpoises

Usage

data(porpoise)

Format

This data set is a regular object of class 1traj (i.e. constant time lag of 24H).

Details

The coordinates are given in meters (UTM - zone 19).

Source

http://whale.wheelock.edu/

Examples
data(porpoise)

plot(porpoise)

50 qqchi

puechcirc Movements of wild boars tracked at Puechabon

Description

This data set is an object of class 1traj, giving the results of the monitoring of 2 wild boars by radio-
tracking at Puechabon (Mediterranean habitat, South of France). These data have been collected by
Daniel Maillard (Office national de la chasse et de la faune sauvage), and correspond to the activity
period of the wild boar (during the night, when the animals forage. The data set puechabonsp in
the package adehabitatMA describes the resting sites).

Usage

data(puechcirc)

Format
This object has, in total, 204 relocations distributed among two animals and three bursts of reloca-
tions (CH930803, CH930824, CH930827, and JE930827).

Source

Maillard, D. (1996). Occupation et utilisation de la garrigue et du vignoble mediterraneens par le
Sanglier. Universite d’ Aix-Marseille III: PhD thesis.

gqchi Quantile-Quantile Plots for Trajectories of Class ’ltraj’

Description

The functions allow the examination of the distribution of trajectories descriptors (see Details).

Usage

Chi distribution of the increment length / sqrt(dt)
qachi(y, ...)

Default S3 method:

gqchi(y, df = 2, ylim, main = "Chi Q-Q Plot”,
xlab = "Theoretical Quantiles”, ylab = "Sample Quantiles”,
plot.it = TRUE, datax = FALSE, ...)

S3 method for class 'ltraj'
gqchi(y, xlab = "Theoretical Quantiles”,
ylab = "Sample Quantiles (Distances)”, ...)

qqchi 51

Normal Distribution of dx/sqrt(dt) or dy/sqrt(dt)
S3 method for class 'ltraj'

ggnorm(y, which=c("dx","dy"), ...)
Arguments
y a vector containing the data sample for qqchi.default. an object of class
1traj for other functions.
df the number of degrees of freedom of the Chi distribution (default to 2).
xlab, ylab, main plot labels.
plot.it logical. Should the result be plotted?
datax logical. Should data values be on the x-axis?
which a character string indicating the component (dx or dy) to be examined.
ylim, ... graphical parameters.
Details

Among the numerous statistics that can be used to describe the movements of an animal, the length
of the increment between two successive relocations is very common. This increment can be de-
scribed by a vector i = c(dx, dy). Under the hypothesis of a Brownian motion, dx and dy should
be normally distributed with mean = 0 and variance = dt (where dt is the time interval between
the two relocations). Therefore, dx/sqrt(dt) and dy/sqrt(dt) should be normally distributed
with mean = 0 and variance = 1. The function qgnorm.1ltraj performs a quantile-quantile plot
of dx/sqrt(dt) or dy/sqrt(dt) vs. a normal distribution to verify wether the Brownian motion
assumption is correct.

Furthermore, the quantity (dx*2 + dy*2)/dt should be distributed according to a Chi-squared dis-
tribution with two degrees of freedom. Thus, the quantity distance / sqrt(dt) should be dis-
tributed according to a Chi distribution with two degrees of freedom (where distance is the dis-
tance between the two relocations). The function qqchi.ltraj performs quantile-quantile plot of
distance/sqrt(dt) vs. a Chi distribution to verify wether the Brownian motion assumption is
correct.

Value

for functions dealing with objects of class 1traj, a list with components being themselves lists,
with components:

X The x coordinates of the points that were/would be plotted
y The original y vector, i.e., the corresponding y coordinates including *NA’s.
Author(s)

Clement Calenge <clement.calenge@ofb.gouv.fr>

See Also
chi, qgplot, 1traj.

52 rasterize.ltraj

Examples

Example with an Arithmetic Brownian Process
toto <- simm.mba(1:500, sig = diag(c(5, 5)))
ggnorm(toto, "dx")

ggnorm(toto, "dy")

qqchi(toto)

Example of wild boar
data(puechcirc)
ggnorm(puechcirc, "dx")
ggnorm(puechcirc, "dy")
qqchi(puechcirc)

rasterize.ltraj Rasterize a Trajectory

Description

The function rasterize.ltraj allows to rasterize a trajectory.

Usage

rasterize.ltraj(ltr, map)

Arguments

1tr An object of class 1traj

map An object inheriting the class SpatialPixels
Value

A list of objects of class SpatialPointsDataFrame, with one component per burst in the object
of class 1traj. Each object contains the coordinates of the pixels of the maps traversed by the
trajectory. The number of the step that traverse each pixel is indicated.

Author(s)

Clement Calenge <clement.calenge@ofb.gouv.fr>

See Also

as.ltraj for additional information about objects of class 1traj

rasterize.ltraj 53

Examples

data(puechabonsp)
data(puechcirc)

Show the trajectories on the map
plot(puechcirc, spixdf = puechabonsp$map)

rasterize the trajectories
ii <- rasterize.ltraj(puechcirc, puechabonsp$map)

show, e.g. the first rasterized trajectory
tr1 <- ii[[1]]

head(tr1)

plot(trl)

so, for example, to see the pixels traversed by the third step of the
trajectory
points(tr1[tr1[[1]1]==3,], col="red")

So, if we want to calculate the mean elevation for each step:
mel <- over(trl, puechabonsp$map)

mo <- tapply(mel[[1]1], tr1[[1]1], mean)

plot(mo, ty="1")

It is clear that elevation decreases at the middle of the monitoring
and increases again at the end (the animal sleeps on the plateau
and goes down in the vineyards during the night).

Now define an infolocs component in puechcirc corresponding to the
mean elevation:

val <- lapply(1:length(ii), function(i) {

get the rasterized trajectory
tr <- ii[[i1]

get the pixels of the map
mel <- over(tr, puechabonsp$map)

calculate the mean elevation
mo <- tapply(mel[[1]]1, tr[[11]1, mean)

prepare the output
elev <- rep(NA, nrow(puechcirc[[i]]))

place the average values at the right place

names(mo) contains the step number (i.e. relocation
number +1)

elev[as.numeric(names(mo))+1] <- mo

Checks that the row.names are the same for
the result and the ltraj component

54

redisltraj

df <- data.frame(elevation = elev)
row.names(df) <- row.names(puechcirc[[i]])

return(df)

b

define the infolocs component
infolocs(puechcirc) <- val

and draw the trajectory
plotltr(puechcirc, "elevation”)

redisltraj

Rediscretization of a Trajectory With Regular Step Length or Duration

Description

This functions rediscretizes one or several trajectories in an object of class 1traj.

Usage

redisltraj(l, u, burst = NULL, samplex® = FALSE, addbit = FALSE,

Arguments

1

u

burst
samplex@
addbit

nnew

type

Details

= 5, type = c("space”, "time"))

an object of class 1traj

the new step length in units of the coordinates or step duration in seconds
The burst identity of trajectories to be rediscretized.

Whether the first relocation of the trajectory should be sampled

logical. When type="space”, whether the line segment linking the last reloca-
tion of the rediscretized trajectory and the last relocation of the raw trajectory
should be added to the result (can be useful for computation of fractal dimen-
sion)

optionnally, you may specify the maximum ratio between number of relocations
of the new trajectory. If not specified, this maximum is equal to 5 times the
number of relocations of the raw trajectory.

a character string indicating whether the step duration (" time") or length (" space”
should be constant

The rediscretization of trajectory has been advocated by several authors in the literature (Turchin
1998, Bovet & Benhamou 1988). It is also the first step of the computation of the fractal dimension
of the path (Sugihara & May 1990).

When type="time", a linear interpolation is performed to find new relocations separated by the

given time lag.

redisltraj 55

Value

An object of class "1traj"”

Author(s)

Clement Calenge <clement.calenge@ofb.gouv.fr>

References

Bovet, P., & Benhamou, S. (1988) Spatial analysis of animal’s movements using a correlated ran-
dom walk model. Journal of Theoretical Biology 131: 419-433.

Turchin, P. (1998) Quantitative analysis of movement, Sunderland, MA.
Sugihara, G., & May, R. (1990) Applications of fractals in Ecology. Trends in Ecology and Evolu-

tion 5: 79-86.
See Also

1traj for further information on objects of class 1traj

Examples

HEHHHHHHHEHE AR
##
Example of space rediscretization

data(puechcirc)
puechcirc

before rediscretization
plot(puechcirc, perani = FALSE)

after rediscretization
toto <- redisltraj(puechcirc, 100)
plot(toto, perani = FALSE)

HHHHHH
##
Example of time rediscretization

data(buffalo)
tr <- buffalo$traj

Show the time lag before rediscretization
plotltr(tr, "dt")

Rediscretization every 1800 seconds
tr <- redisltraj(tr, 1800, type="time")

Show the time lag after rediscretization

56 residenceTime

plotltr(tr, "dt")

residenceTime Trajectory Analysis using the Residence Time Method

Description

These functions can be used to apply the residence time method (Barraquand and Benhamou, 2008).

Usage

residenceTime(1lt, radius, maxt, addinfo = FALSE,
units = c("seconds”, "hours”, "days"))

S3 method for class 'resiti'
print(x, ...)

S3 method for class 'resiti'

plot(x, addpoints = FALSE, addlines = TRUE, ...)
Arguments
1t an object of class 1traj
radius the radius of the patch (in units of the coordinates)
maxt maximum time threshold that the animal is allowed to spend outside the patch

before that we consider that the animal actually left the patch (see Details)

addinfo logical value. If TRUE, then the residence time method is added as a variable
in the infolocs component of the object 1t. If FALSE this function returns an
object of class resiti

units a character string indicating the time units of maxt
X an object of class "resiti”

addpoints logical. Whether points should be added to the plot.
addlines logical. Whether lines should be added to the plot.

additionnal arguments to be passed to or from other methods

Details

Barraquand and Benhamou (2008) proposed a new approach to identify the places where the ani-
mals spend the most of their time, relying on the calculation of their residence time in the various
places where they have been relocated. This approach is similar to the first passage time method:
for a given value of radius and for a given relocation, the first passage time is defined as the time
required by the animal to pass through a circle of given radius centred on the relocation (see the help
page of the function fpt for additional details). The residence time associated to a given relocation
corresponds to the first passage time calculated at this place plus the passage times that occurred

residenceTime 57

in this circle before or after the current relocation, *given* that the animal did not spent a time
greater than maxt before reentering the circle (see Barraquand and Benhamou, 2008, for details). It
is therefore computed by determining the various times at which the path intersects the perimeter of
the circle centred on the current relocation, both forward and backward, and then by summing the
durations associated with the various portions of the path occurring within the circle. The graphical
examination of the changes with time allow to identify the dates and places where the animal spent
most of its time.

A partitionning method can be used to segment the series formed by the residence time into ho-
mogeneous segments. Barraquand and Benhamou (2008) propose the method of Lavielle (1999,
2005). See the function lavielle for details about this method.

Value

If addinfo = FALSE, the function residenceTime returns a list of class "resiti"” where each ele-
ment corresponds to a burst of the object 1t. Each element is a data. frame with two columns: the
date and the residence time associated with the date.

Author(s)

Clement Calenge <clement.calenge@ofb.gouv.fr>

References

Barraquand, F. and Benhamou, S. (2008) Animal movement in heterogeneous landscapes: identi-
fying profitable places and homogeneous movement bouts. Ecology, 89, 3336-3348.

See Also

lavielle for the partitionning of the trajectory based on the residence time.

Examples

Not run:
data(albatross)
1tr <- albatross[1]

show the distances between successive relocations as a function
of date
plotltr(ltr)

focus on the first period
1tr <- gdltraj(ltr, as.POSIXct("2001-12-15", tz="UTC"),
as.POSIXct("2003-01-10", tz="UTC"))

plot(ltr)

We identify places that seem to be a patch and, with locator,

we measure approximately their size.

The approximate patch radius can be set equal to 100 km as a first try

plotltr(ltr, "dt")
As a first try, we could set maxt equal to 15000 seconds, i.e.

58

residenceTime

approximately 4 hours

calculation of the residence time
res <- residenceTime(ltr, radius = 100000, maxt=4, units="hour")
plot(res)

There seems to be about 10 segments. Let us try the method

of Lavielle (1999, 2005) to segment this series:

First calculate again the residence time as the infolocs attribute

of the trajectory

res <- residenceTime(ltr, radius = 100000, maxt=4, addinfo = TRUE, units="hour")
res

Note that the residence time is now an attribute of the infolocs
component of res

Now, use the Lavielle method, with Kmax set to 2-3 times the

"optimal” number of segments, assessed visually according

to the recommendations of Barraquand and Benhamou (2008)

We set the minimum number of relocations in each segment to

10 observations (given that the relocations were theoretically

taken every hour, this defines a patch as a place where the animal
stays at least 10 hours: this also defines the scale of our study)

ii <- lavielle(res, which="RT.100000", Kmax=20, Lmin=10)

Both the graphical method and the automated method to choose
the optimal number of segments indicate 4 segments
(see ?lavielle for a description of these methods):

chooseseg(ii)

We identify the 4 segments: the method of Lavielle seems to do a good
job:
(pa <- findpath(ii, 4))

and we plot this partition:
plot(pa, perani=FALSE)

Now, we could try a study at a smaller scale (patch = 50km):

res <- residenceTime(ltr, radius = 50000, maxt=4, addinfo = TRUE,
units="hour")

ii <- lavielle(res, which="RT.50000", Kmax=20, Lmin=10)

5 segments seem a good choice:
chooseseg(ii)

There is more noise in the residence time, but
the partition is still pretty clear:
(pa <- findpath(ii, 5))

runsNAltraj 59

show the partition:
plot(pa, perani = FALSE)

Now try at a larger scale (patch size=250 km)

res <- residenceTime(ltr, radius = 250000, maxt=4, addinfo = TRUE,
units="hour")

ii <- lavielle(res, which="RT.250000", Kmax=15, Lmin=10)

5 segments seem a good choice again:
chooseseg(ii)

There is more noise in the residence time, but
the partition is still pretty clear:

(pa <- findpath(ii, 5))

show the partition:

plot(pa, perani = FALSE)

End(Not run)

runsNAltraj Highlighting the Patterns in Missing Values in Trajects

Description

runsNAltraj performs a runs test to detect any autocorrelation in the location of missing reloca-
tions, for each burst of an object of class 1traj.

summaryNAltraj returns a summary of the number and proportion of missing values for each burst
of an object of class 1traj.

plotNAltraj plots the missing values in an object of class 1traj against the time.

Usage
runsNAltraj(x, nrep = 500, plotit = TRUE, ...)
summaryNAltraj(x)
plotNAltraj(x, ...)
Arguments
X An object of class 1traj
nrep Number of randomisations
plotit logical. Whether the results should be plotted on a graph

Further arguments to be passed to the generic function plot

60 runsNAltraj

Details

The statistics used here for the test is the number of runs in the sequence of relocations. For ex-
ample, the sequence reloc-NA-NA-reloc-reloc-reloc-NA-NA-NA-reloc contains 5 runs, 3 runs of
successful relocations and 2 runs of missing values. Under the hypothesis of random distribution of
the missing values in the sequence, the theoretical expectation and standard deviation of the num-
ber of runs is known. The runs test is a randomization test that compares the standardized value
of the number of runs (i.e. (value-expectation)/(standard deviation)) to the distribution of values
obtained after randomizing the distribution of the NA in the sequence. Thus, a negative value of
this standardized number of runs indicates that the missing values tend to be clustered together in
the sequence.

Value

runsNAltraj returns a list of objects of class randtest (if a burst does not contain any missing
value, the corresponding component is NULL).

Note

In the versions of adehabitatLT prior to 0.3.21, a bug occurred in the calculation of the P-value (the
test actually presented the value 1-P). This bug is now corrected.

Author(s)

Clement Calenge <clement.calenge@ofb.gouv.fr>

See Also

ltraj for additional information about objects of class 1traj, setNA for additional information
about missing values in such objects

Examples

Two relocations are theoretically separated by
10 minutes (600 seconds)

data(puechcirc)

puechcirc

plot the missing values

plotNAltraj(puechcirc)

Test for an autocorrelation pattern in the missing values
(runsNAltraj(puechcirc))

rupicabau 61

rupicabau GPS Monitoring of One Chamois in the Bauges Mountains

Description
This dataset is an object of class "ltraj" (regular trajectory, relocations every 20 minutes) containing
the GPS relocations of two chamois during one day in the Bauges mountain (French Alps).

Usage

data(rupicabau)

Source
Office national de la chasse et de la faune sauvage, CNERA Faune de Montagne, 95 rue Pierre
Flourens, 34000 Montpellier, France.

Examples

data(rupicabau)
plot(rupicabau)

set.limits Define the Same Time Limits for several Bursts in a Regular Trajectory

Description

This function sets the same time limits for several bursts in a regular trajectory.

Usage
set.limits(ltraj, begin, dur, pattern,
units = c("sec”, "min”, "hour”, "day"),
tz="", ...)
Arguments
ltraj an object of class 1traj
begin a character string which is used to determine the time of beginning of the study
period (see below)
dur the duration of the study period
pattern a character string indicating the conversion specifications for begin (see below)
units a character string indicating the time units of dur
tz A timezone specification to be used for the conversion of begin. System-

nn

specific, but "" is the current time zone, and "GMT" is UTC (see help(strptime))

additional arguments to be passed to other functions

62 set.limits

Details

Some studies are intended to compare regular trajectories of the same duration collected at different
period. For example, the aim may be to identify the differences/similarities between different days
(each one corresponding to a burst of relocation) in the pattern of movements of an animal between
05HOO and O8HOO, with a time lag of 5 minutes. In such cases, it is often convenient that the
relocations of the bursts are paired (e.g. the fifth relocation correspond to the position of the animal
at SH30 for all bursts).

The function set.limits is intended to ensure that the time of beginning, the end, and the duration
of the trajectory is the same for all bursts of the object 1traj. If relocations are collected outside
the limits, they are removed (and so is the corresponding metadata in the attribute infolocs). If the
actual time limits of the burst cover a shorter period than those specified, missing values are added
to the trajectory (and in the corresponding metadata in the attribute infolocs).

Note that "time of beginning" is not a synonym for "date". That is, two trajectories of the same
animal, both beginning at 05HOO and ending at 08HOO, have the same time of beginning, but are
necessarily not sampled on the same day, which implies that they correspond to different dates. For
this reason, the time of beginning is indicated to the function set.1limits by a character string, and
the parameter pattern should indicate the conversion specifications. These conversions specifica-
tions are widely documented on the help page of the function strptime. For example, to indicate
that the trajectory begins at SHOO, the value for begin should be "05:00" and the value for pattern
should be "%H:%M". If the trajectory should begin on january 10th, the value for begin should be
"@1:10" and pattern should be "%m:%d". Note that the only conversion specifications allowed in
this function are %S (seconds), %M (minutes), %H (hours), %d (day), %m (month), %Y (year with cen-
tury), %w (weekday), and %j (yearday). See help(strptime) for additional information on these
convention specifications.

Value

an object of class 1traj

Author(s)

Clement Calenge <clement.calenge@ofb.gouv.fr>

See Also

ltraj for additional information on objects of class 1traj, sett@ for additional information on
regular trajectories, and sd2df for additionnal information about regular trajectories of the same
duration. See also strptime for further information about conversion specifications for dates.

Examples

load data on the ibex
data(ibex)
ibex

The monitoring of the 4 ibex should start and end at the same time
define the time limits

ib2 <- set.limits(ibex, begin="2003-06-01 00:00", dur=14,

setNA 63

units="day", pattern="%Y-%m-%d %H:%M", tz="Europe/Paris")
ib2
is.sd(ib2)
All the trajectories cover the same study period

Relocations are collected at the same time. This dataset can now be
used for studies of interactions between animals

setNA Place Missing Values in Objects of Class ’ltraj’

Description

This function places missing values in an (approximately) regular trajectory, when a relocation
should have been collected, but is actually missing.

Usage
setNA(ltraj, date.ref, dt, tol = dt/10,
units = c("sec”, "min”, "hour”, "day"), ...)
Arguments
ltraj an object of class 1traj
date.ref an object of class POSIXt (see below)
dt the time lag between relocations
tol the tolerance, which measures the imprecision in the timing of data collection
(see below)
units a character string indicating the time units for dt and tol
additional arguments to be passed to the function rec
Details

During the field study, the collection of the relocations of a trajectory may sometimes fail, which
results into missing values. The class 1traj deal with these missing values, so that it is recom-
mended to store the missing values in the data *before* the creation of the object of class 1traj.
For example, GPS collars often fail to locate the animal, so that the GPS data imported within R
contain missing values. It is recommended to *not remove* these missing values.

However, sometimes, the data come without any information concerning the placement of these
missing values. If the trajectory is approximately regular (i.e. approximately constant time lag), it
is possible to determine where these missing values should occur in the object of class 1traj (and
in the optional attribute infolocs). This is the role of the function setNA.

The relocations in the object of class 1traj may not have been collected at exactly identical time
lag (e.g. a relocation is collected at 17H57 instead of 18H00). The function setNA requires that the
imprecision in the timing is at most equal to tol. Because of this imprecision, it is necessary to

64 setNA

pass a reference date as argument to the function setNA. This reference date is used to determine at
which time the missing values should be placed.

The reference date is chosen so that the rest of the division of (date.relocations - reference.date)
by the time lag dt is equal to zero. For example, if it is known that one of the relocations of the
trajectory has been collected on January 16th 1996 at 18HOO0, and if the theoretical time lag between
two relocations is of one hour, the date of reference could be (for example) the August 1st 2017 at
05HO0, because these two dates are separated by an exact number of hours (i.e. an exact number of
dt). Therefore, any date fulfilling this condition could be passed as reference date. Alternatively, the
August 1st 2007 at 05H30 is an uncorrect reference date, because the number of hours separating
these two dates is not an integer.

Value

An object of class 1traj

Author(s)

Clement Calenge <clement.calenge@ofb.gouv.fr>

See Also

1traj for additional information about objects of class 1traj. sett@ (especially the examples of
this help page) and is. regular for additional information about regular trajectories.

Examples

data(porpoise)
foc <- porpoise[1]

the list foc does not contain any missing value:
foc
plotNAltraj(foc)

we remove the second to tenth relocation
foc[[1]1] <~ foc[[1]11[-c(2:10),]
foc <- rec(foc)

The missing values are not visible:
foc
plotNAltraj(foc)

The porpoise is located once a day.
We use the first relocation as the reference date
foc2 <- setNA(foc, foc[[1]]$date[1], 24x3600)

Missing values are now present
foc2
plotNAltraj(foc2)

sett0 65

setto Round the Timing of Collection of Relocations to Obtain Regular Tra-
jectory

Description

This function rounds the timing of collection of relocations in an object of class 1traj to obtain a
regular trajectory, based on a reference date.

Usage
sett@(ltraj, date.ref, dt, correction.xy = c("none", "cs"),
tol = dt/10, units = c("sec”, "min"”, "hour"”, "day"), ...)
Arguments
ltraj an object of class 1traj
date.ref an object of class POSIXt containing either one reference date (the same for all
animals) or n reference dates, where n is the number of bursts in 1traj (see
below)
dt the time lag between relocations

correction.xy the correction for the coordinates. "none” (default), does not performs any cor-
rection. "cs” performs a correction based on the hypothesis that the animal
moves at constant speed (see below).

tol the tolerance, which measures the imprecision in the timing of data collection
(see below)

units the time units for dt and tol

additional arguments to be passed to the function rec

Details

Trajectories are stored in adehabitatLT as lists of "bursts" of successive relocations with the timing
of relocation. Regular trajectories are characterized by a constant time lag dt between successive
relocations (don’t mix animals located every 10 minutes and animals located every day in a regular
trajectory).

However, in many cases, the actual time lag in the data may not be equal to the theoretical time lag
dt: there may be some negligible imprecision in the time of collection of the data (e.g. an error of
a few seconds on a time lag of one hour).

But many functions of adehabitatLT require exact regular trajectories. sett@ allows to round the
date so that all the successive relocations are separated exactly by dt. The function sett@ requires
that the imprecision is at most equal to tol. To proceed, it is necessary to pass a reference date as
argument.

The reference date is chosen so that the rest of the division of (date.relocations - reference.date)
by dt is equal to zero. For example, if it is known that one of the relocations of the trajectory

66

sett0

should have been collected on January 16th 1996 at 18HOO, and if the theoretical time lag between
two relocations is of one hour, the date of reference could be (for example) the August 1st 2017
at 05HO00, because these two dates are separated by an exact number of hours. Alternatively, the
August 1st 2007 at 05H30 is an uncorrect reference date, because the number of hours separating
these two dates is not an integer.

Note that this rounding adds an error on the relocation. For example, the position of a moving animal
at 17H57 is not the same as its position at 18H0O. If the time imprecision in the data collection is
negligible (e.g. a few seconds, while dt is equal to an hour), this "noise" in the relocations can be
ignored, but if it is more important, a correction on the relocation is needed. The function sett@
may correct the relocations based on the hypothesis of constant speed (which is not necessarily
biologically relevant, see examples).

Note finally that missing values can be present in the trajectory. Indeed, there are modes of data
collection that fail to locate the animal at some dates. These failures should appear as missing values
in the regular trajectory. It is often convenient to use the function setNA before the function sett@
to set the missing values in a (nearly) regular trajectory.

Value

an object of class 1traj containing a regular trajectory.

Author(s)

Clement Calenge <clement.calenge@ofb.gouv.fr>

See Also

ltraj for additional information on objects of class 1traj, is.regular for regular trajectories,
setNA to place missing values in the trajectory and cutltraj to cut a trajectory into several bursts
based on a criteria.

Examples

Not run:

HHHHHHAREEEE A A R
#H#

#H#

Transform a GPS monitoring on 4 ibex into a regular trajectory

#H

data(ibexraw)
is.regular(ibexraw)

the data are not regular: see the distribution of dt (in hours)
according to the date

plotltr(ibexraw, "dt/3600")

The relocations have been collected every 4 hours, and there are some
missing data

simm.bb 67

The reference date: the hour should be exact (i.e. minutes=0):
refda <- strptime("00:00", "%H:%M", tz="Europe/Paris")
refda

Set the missing values
ib2 <- setNA(ibexraw, refda, 4, units = "hour")

now, look at dt for the bursts:
plotltr(ib2, "dt")

dt is nearly regular: round the date:
ib3 <- sett@(ib2, refda, 4, units = "hour")

plotltr(ib3, "dt")
is.regular(ib3)

ib3 is now regular

End(Not run)

simm.bb Brownian bridge motion

Description

This function simulates a brownian bridge motion

Usage

simm.bb(date = 1:100, begin = c(@, @), end = begin, id = "A1",
burst = id, proj4string=CRS())

Arguments

date a vector indicating the date (in seconds) at which relocations should be simu-
lated. This vector can be of class POSIXct

begin a vector of length 2 giving the x and y coordinates of the location beginning of
the trajectory

end a vector of length 2 giving the x and y coordinates of the location ending the
trajectory

id a character string indicating the identity of the simulated animal (see help(ltraj))

burst a character string indicating the identity of the simulated animal (see help(ltraj))

proj4string a valid CRS object containing the projection information (see ?CRS from the

package sp).

68

Value

simm.brown

An object of class 1traj.

Author(s)

Clement Calenge <clement.calenge@ofb.gouv.fr>
Stephane Dray <dray@biomserv.univ-lyonl.fr>
Manuela Royer <royer@biomserv.univ-lyon1.fr>
Daniel Chessel <chessel@biomserv.univ-1lyon1.fr>

See Also

1traj, hbrown

Examples

plot(simm.bb(1:1000, end=c(100,100)), addpoints = FALSE)

simm.brown

Simulate a Bivariate Brownian Motion

Description

This function

Usage

simulates a Bivariate Brownian Motion.

simm.brown(date = 1:100, x0 = c(@, @), h =1, id = "A1", burst = id,

Arguments

date

X0
h

id
burst

proj4string

proj4string=CRS())

a vector indicating the date (in seconds) at which relocations should be simu-
lated. This vector can be of class POSIXct

a vector of length 2 containing the coordinates of the startpoint of the trajectory

Scaling parameter for the brownian motion (larger values give smaller disper-
sion)

a character string indicating the identity of the simulated animal (see help(ltraj))
a character string indicating the identity of the simulated burst (see help(ltraj))

a valid CRS object containing the projection information (see ?CRS from the
package sp).

simm.crw 69

Details

A bivariate Brownian motion can be described by a vector B2(t) = (Bx(t), By(t)), where Bx and
By are unidimensional Brownian motions. Let F (t) the set of all possible realisations of the process
(B2(s), @ <s<t).F(t) therefore corresponds to the known information at time t. The properties
of the bivariate Brownian motion are therefore the following: (i) B2(@)= c(@,0) (no uncertainty
at time t = 0); (ii) B2(t) - B2(s) is independent of F(s) (the next increment does not depend on
the present or past location); (iii) B2(t) - B2(s) follows a bivariate normal distribution with mean
c(0,0) and with variance equal to (t-s).

Note that for a given parameter h, the process 1/h * B2(t * h*2) is a Brownian motion. The
function simm.brown simulates the process B2(t * h*2). Note that the function hbrown allows the
estimation of this scaling factor from data.

Value

An object of class 1traj

Author(s)

Clement Calenge <clement.calenge@ofb.gouv.fr>
Stephane Dray <dray@biomserv.univ-lyon1.fr>
Manuela Royer <royer@biomserv.univ-lyonl.fr>
Daniel Chessel <chessel@biomserv.univ-1lyonl.fr>

References

~put references to the literature/web site here ~

See Also

1traj, hbrown

Examples

plot(simm.brown(1:1000), addpoints = FALSE)

Note the difference in dispersion:
plot(simm.brown(1:1000, h = 4), addpoints = FALSE)

simm.crw Simulation of a Correlated Random Walk

Description

This function simulates a correlated random walk

70 simm.crw

Usage

simm.crw(date=1:100, h =1, r = 0,
x0=c(0,0), id="A1", burst=id,
typeII=TRUE, proj4string=CRS())

Arguments
date a vector indicating the date (in seconds) at which relocations should be simu-
lated. This vector can be of class POSIXct. *Note that the time lag between two
relocations should be constant* (regular trajectories required)
h the scaling parameter for the movement length
r The concentration parameter for wrapped normal distribution of turning angles
X0 a vector of length 2 containing the coordinates of the startpoint of the trajectory
id a character string indicating the identity of the simulated animal (see help(ltraj))
burst a character string indicating the identity of the simulated burst (see help(ltraj))
typell logical. Whether the simulated trajectory should be of type II (TRUE, time
recorded) or not (FALSE, time not recorded). See help(ltraj).
proj4string a valid CRS object containing the projection information (see ?CRS from the
package sp).
Details

Since the seminal paper of Kareiva and Shigesada (1983), most biologists describe the trajectories
of an animal with the help of two distributions: the distribution of distances between successive
relocations, and the distribution of turning angles between successive moves (relative angles in the
class 1traj). The CRW is built iteratively. At each step of the simulation process, the orientation of
the move is drawn from a wrapped normal distribution (with concentration parameter r). The length
of the move is drawn from a chi distribution, multiplied by h x sqrt(dt). h is a scale parameter
(the same as in the function simm.brown(), and the distribution is multiplied by sqrt(t) to make it
similar to the discretized Brownian motion if r == 0.

Value

an object of class 1traj

Note

This function requires the package CircStats.

Author(s)

Clement Calenge <clement.calenge@ofb.gouv.fr>
Stephane Dray <dray@biomserv.univ-lyonl.fr>
Manuela Royer <royer@biomserv.univ-lyonl.fr>
Daniel Chessel <chessel@biomserv.univ-1lyon1.fr>

simm.levy 71

References
Kareiva, P. M. & Shigesada, N. (1983) Analysing insect movement as a correlated random walk.
Oecologia, 56: 234-238.

See Also

chi, rwrpnorm, simm.brown, 1traj, simm.crw, simm.mba

Examples

suppressWarnings (RNGversion(”3.5.0"))
set.seed(876)

u <- simm.crw(1:500, =0.99, burst = "r = 0.99")
v <= simm.crw(1:500, = 0.9, burst = "r = 0.9", h = 2)
w <- simm.crw(1:500, 0.6, burst = "r = 0.6", h =5)

@, burst = "r = @ (Uncorrelated random walk)",

x <= simm.crw(1:500,

R e B R |
1]

z <- c(u, v, w, x)
plot(z, addpoints = FALSE, perani = FALSE)

simm.levy Simulates a Levy Walk

Description

This function simulates a Levy walk

Usage
simm.levy(date = 1:500, mu = 2, 10 = 1, x0 = c(0, 0),

id = "A1", burst = id, typelIl = TRUE,
proj4string=CRS())

Arguments

date a vector indicating the date (in seconds) at which relocations should be simu-
lated. This vector can be of class POSIXct. *Note that the time lag between two
relocations should be constant® (regular trajectories required)

mu The exponent of the Levy distribution

10 The minimum length of a step

X0 a vector of length 2 containing the coordinates of the startpoint of the trajectory

id a character string indicating the identity of the simulated animal (see help(ltraj))

burst a character string indicating the identity of the simulated burst (see help(ltraj))

typell logical. Whether the simulated trajectory should be of type II (TRUE, time
recorded) or not (FALSE, time not recorded). See help(1ltraj).

proj4string a valid CRS object containing the projection information (see ?CRS from the

package sp).

72 simm.mba

Details

This function simulates a Levy flight with exponent mu. This is done by sampling a random relative
angle from a uniform distribution (-pi, pi) for each step, and a step length generated by dt * (10 *
(runif(1)*(1/(1 -mu))))

Value

an object of class 1traj

Author(s)

Clement Calenge <clement.calenge@ofb.gouv.fr>

References
Bartumeus, F., da Luz, M.G.E., Viswanathan, G.M. Catalan, J. (2005) Animal search strategies: a
quantitative random-walk analysis. Ecology, 86: 3078-3087.

See Also

chi, rwrpnorm, simm.brown, 1traj, simm.crw, simm.mba, simm. levy

Examples

suppressWarnings(RNGversion(”3.5.0"))
set.seed(411)

w <- simm.levy(1:500, mu = 1.5, burst = "mu = 1.5")
u <- simm.levy(1:500, mu = 2, burst = "mu = 2")
v <- simm.levy(1:500, mu = 2.5, burst = "mu = 2.5")
X <- simm.levy(1:500, mu = 3, burst = "mu = 3")
par(mfrow=c(2,2))
lapply(list(w,u,v,x), plot, perani=FALSE)
simm.mba Simulation of an Arithmetic Brownian Motion

Description

This function simulates an Arithmetic Brownian Motion.

Usage

simm.mba(date = 1:100, x@ = c(0, @), mu = c(0, 0),
sigma = diag(2), id = "A1", burst = id,
proj4string=CRS())

simm.mba 73

Arguments
date a vector indicating the date (in seconds) at which relocations should be simu-
lated. This vector can be of class POSIXct
X0 a vector of length 2 containing the coordinates of the startpoint of the trajectory
mu a vector of length 2 describing the drift of the movement
sigma a 2*2 positive definite matrix
id a character string indicating the identity of the simulated animal (see help(ltraj))
burst a character string indicating the identity of the simulated burst (see help(ltraj))
proj4string a valid CRS object containing the projection information (see ?CRS from the
package sp).
Details

The arithmetic Brownian motion (Brillinger et al. 2002) can be described by the stochastic differ-
ential equation:

dz(t) = pdt + XdB2(t)

Coordinates of the animal at time t are contained in the vector z(t). dz = c(dx, dy) is the incre-
ment of the movement during dt. dB2(t) is a bivariate brownian Motion (see ?simm.brown). The
vector mu measures the drift of the motion. The matrix Sigma controls for perturbations due to the
random noise modeled by the Brownian motion. It can also be used to take into account a potential
correlation between the components dx and dy of the animal moves during dt (see Examples).

Value

An object of class 1traj

Author(s)

Clement Calenge <clement.calenge@ofb.gouv.fr>
Stephane Dray <dray@biomserv.univ-lyon1.fr>
Manuela Royer <royer@biomserv.univ-lyonl.fr>
Daniel Chessel <chessel@biomserv.univ-lyon1.fr>

References

Brillinger, D.R., Preisler, H.K., Ager, A.A. Kie, J.G. & Stewart, B.S. (2002) Employing stochastic
differential equations to model wildlife motion. Bulletin of the Brazilian Mathematical Society 33:
385-408.

See Also

simm.brown, 1traj, simm.crw, simm.mou

74 simm.mou

Examples

suppressWarnings(RNGversion("3.5.0"))

set.seed(253)

u <- simm.mba(1:1000, sigma = diag(c(4,4)),
burst = "Brownian motion")

v <- simm.mba(1:1000, sigma = matrix(c(2,-0.8,-0.8,2), ncol = 2),
burst = "cov(x,y) > 0")

w <- simm.mba(1:1000, mu = c(0.1,0), burst = "drift > @")

X <- simm.mba(1:1000, mu = c(0.1,0),
sigma = matrix(c(2, -90.8, -0.8, 2), ncol=2),
burst = "Drift and cov(x,y) > @")

z <- c(u, v, w, Xx)

plot(z, addpoints = FALSE, perani = FALSE)

simm.mou Simulation of a Bivariate Ornstein-Uhlenbeck Process

Description

This function simulates a bivariate Ornstein-Uhlenbeck process for animal movement.

Usage

simm.mou(date = 1:100, b = c(0, @),
a = diag(0.5, 2), x0 = b,
sigma = diag(2), id = "A1",
burst = id, proj4string=CRS())

Arguments

date a vector indicating the date (in seconds) at which relocations should be simu-
lated. This vector can be of class POSIXct

b a vector of length 2 containing the coordinates of the attraction point
a a 2*2 matrix
X0 a vector of length 2 containing the coordinates of the startpoint of the trajectory
sigma a 2*2 positive definite matrix
id a character string indicating the identity of the simulated animal (see help(ltraj))
burst a character string indicating the identity of the simulated burst (see help(ltraj))
proj4string a valid CRS object containing the projection information (see ?CRS from the

package sp).

simm.mou 75

Details

The Ornstein-Uhlenbeck process can be used to take into account an "attraction point" into the
animal movements (Dunn and Gipson 1977). This process can be simulated using the stochastic
differential equation:

dz = a(b — z(t))dt + £dB2(t)

The vector b contains the coordinates of the attraction point. The matrix a (2 rows and 2 columns)
contains coefficients controlling the force of the attraction. The matrix Sigma controls the noise
added to the movement (see ?simm.mba for details on this matrix).

Value

An object of class 1traj

Author(s)

Clement Calenge <clement.calenge@ofb.gouv.fr>
Stephane Dray <dray@biomserv.univ-lyonl.fr>
Manuela Royer <royer@biomserv.univ-lyonl.fr>
Daniel Chessel <chessel@biomserv.univ-1lyonl.fr>

References

Dunn, J.E., & Gipson, P.S. (1977) Analysis of radio telemetry data in studies of home range. Bio-
metrics 33: 85-101.

See Also

simm.brown, 1traj, simm.crw, simm.mba

Examples

suppressWarnings(RNGversion("”3.5.0"))

set.seed(253)

u <- simm.mou(1:50, burst="Start at the attraction point")

v <- simm.mou(1:50, x0=c(-3,3),
burst="Start elsewhere"”)

w <- simm.mou(1:50, a=diag(c(0.5,0.1)), x0=c(-3,3),
burst="Variable attraction")

X <- simm.mou(1:50, a=diag(c(0.1,0.5)), x0=c(-3,7),
burst="Both")

z <= c(u,v,w,Xx)

plot(z, addpoints = FALSE, perani = FALSE)

76 sliwinltr

sliwinltr Apply a Function on an Object of Class "ltraj", Using a Sliding Win-
dow

Description

This function applies a function on an object of class "ltraj", using a sliding window.

Usage
sliwinltr(ltraj, fun, step, type = c("locs”, "time"),
units = c("sec”, "min"”, "hour"”, "day"),
plotit = TRUE, ...)
Arguments
ltraj an object of class 1traj
fun the function to be applied, implying at least one of the descriptive parameters in
the object of class 1traj (see below)
step the half-width of the sliding window. If type=="1ocs", it is a number of relo-
cations. If type=="time" it is a number described by units
type character string. If type == "locs”, step describes a number of relocations: if
type == "time", step describes a time lag.
units if type == "time", the time units described by step. Ignored otherwise
plotit logical. Whether the result should be plotted
additional arguments to be passed to the function rec
Details

An object of class ltraj is a list with one component per burst of relocations. The function fun is
applied to each burst of relocations. This burst of relocations should be refered as x in fun. For
example, to compute the mean of the distance between successive relocations, the function fun is
equal to function(x) mean(x$dist).

Do not forget that some of the descriptive parameters in the object 1traj may contain missing
values (see help(ltraj)). The function should therefore specify how to manage these missing
values.

Value

If type=="1ocs", a list with one component per burst of relocation containing the smoothed values
for each relocation.

If type=="1locs", a list with one component per burst of relocation. Each component is a data
frame containing the time and the corresponding smoothed values for each date.

subsample 77

Author(s)

Clement Calenge <clement.calenge@ofb.gouv.fr>

See Also

1traj for additional information about objects of class 1traj

Examples

Not run:
data(capreotf)

computes the average speed of the roe deer in a moving window of width

equal to 60 minutes

toto <- sliwinltr(capreotf, function(x) mean(x$dist/x$dt, na.rm = TRUE),
step = 30, type = "time"”, units = "min")

zoom before the peak
head(toto[[1]11)
plot(toto[[1]][1:538,]1, ty="1")

End(Not run)

subsample Subsample a Trajectory

Description

This function subsamples a regular trajectory (i.e. changes the time lag between successive reloca-

tions).
Usage
subsample(ltraj, dt, nlo =1,
units = c("sec”, "min”, "hour”, "day"), ...)
Arguments
ltraj an object of class 1traj
dt numeric value. The new time lag (should be a multiple of the time lag in 1traj)
nlo an integer, or a vector of integers (with length equal to the number of bursts in
ltraj), indicating the position of the first location of the new bursts in the old
bursts. For example, if the previous time lag is equal to 300 seconds and the new
time lag is 900 seconds, the new bursts may begin at the first, second or third
relocations of the old bursts in 1traj.
units character string. The time units of dt

additional arguments to be passed to other functions

78 teal

Value

An object of class 1traj

Author(s)

Clement Calenge <clement.calenge@ofb.gouv.fr>

See Also

1traj for additional information on objects of class 1traj, is.regular for regular trajectories.

Examples

data(capreotf)
plot(capreotf)

toto <- subsample(capreotf, dt = 900)
plot(toto)

teal Teal (Anas crecca) Ring Recovery Dataset

Description

This dataset describes the location and date of recovery of 800 teal ringed in Camargue, southern
France between January 1952 and February 1978 using standard dabbling duck funnel traps hidden
in the vegetation.

Usage

data(teal)

Format
The following variables are given for each recovery:

X anumeric vector giving the longitude of the recovery
y anumeric vector giving the latitude of the recovery

date a vector of class POSIXct containing the date of recovery. Actually, only the day and month
have been indicated. The year of recovery has been set to 1900 or 1901, and should not be
taken into account in the analysis.

Details

The Camargue teal ringing program led to the recovery of 9,114 teals after the ringing of 59,187
birds. These 800 recoveries of this dataset are a subsample of the 4,652 birds recovered during
the first year following ringing. Note that both the coordinates and the date have been jittered to
preserve copyright on the data.

testNM 79

Source

La Tour du Valat. A research centre for the conservation of Mediterranean wetlands. Le Sambuc -
13200 Arles, France. http://en.tourduvalat.org/

Examples

data(teal)

plot(teall,1:2], asp=1,
xlab="1longitude"”, ylab="latitude",
main="Capture site (red) and recoveries")

points(attr(teal, "CaptureSite"), pch=16,
cex=2, col="red")

testNM Null Model Approach for Animal Movement Analysis

Description

The functions NMs. * allow to define "single null models" (see details). The function NMs2NMm can
be used on an object of class "NMs" to define "multiple null models". The function testNM can be
used to simulate the defined null models.

Usage

NMs.randomCRW(1ltraj, rangles = TRUE, rdist = TRUE, fixedStart
X0 = NULL, rx = NULL, ry = NULL, treatment.func
treatment.par = NULL, constraint.func = NULL,
constraint.par = NULL, nrep = 999)

TRUE,
NULL,

NMs.randomShiftRotation(ltraj, rshift = TRUE, rrot = TRUE,
rx = NULL, ry = NULL, treatment.func = NULL,
treatment.par = NULL, constraint.func = NULL,
constraint.par = NULL, nrep = 999)

NMs.CRW(N = 1, nlocs = 100, rho = @, h =1, x0 = c(0,0),
treatment.func = NULL,
treatment.par = NULL, constraint.func = NULL,
constraint.par = NULL, nrep = 999)

NMs.randomCs(ltraj, Cs = NULL, rDistCs = TRUE,
rAngleCs = TRUE,
rCentroidAngle = TRUE, rCs
newCs = NULL, newDistances

TRUE,
NULL,

80

testNM

treatment.func = NULL, treatment.par = NULL,
constraint.func = NULL, constraint.par = NULL,
nrep=999)

NMs2NMm(NMs, treatment.func = NULL,
treatment.par = NULL, constraint.func = NULL,
constraint.par = NULL, nrep = 999)

S3 method for class 'NMm'

print(x, ...)

S3 method for class 'NMs'

print(x, ...)

testNM(NM, count = TRUE)

Arguments

ltraj
rangles
rdist

fixedStart

x0

rx

ry

treatment. func

treatment.par

constraint. func

constraint.par

an object of class "1traj”
logical. Whether the turning angles should be randomized.

logical. Whether the distances between successive relocations should be ran-
domized.

logical. If TRUE, the first location of the randomized trajectories corresponds to
x@. If FALSE, the first location (x, y) is sampled in the interval (rx, ry)

a vector of length 2 giving the x and y coordinates of the first relocations. If
NULL and fixedStart=TRUE, the first location of the trajectory corresponds to
the first location of the actual trajectory

a vector of length 2 giving the x coordinates of the bounding box where the first
location of the trajectory should be sampled

a vector of length 2 giving the range (min, max) of the y coordinates of the
bounding box where the first location of the trajectory should be sampled

any function taking two arguments x and par, where x is the trajectory generated
by the function, and par can be any R object (e.g. a list containing the parameters
needed by the function. Note that the argument par should be present in the
function definition even if it is not needed in the function). See details and
examples. If NULL, a function is defined internally that simply returns the raw
trajectory simulated by the model

the R object that will be passed as an argument to the parameter par of the
function treatment. func

any function taking two arguments x and par, where x is the trajectory generated
by the function, and par can be any R object (e.g. a list containing the parameters
needed by the function). **This function should necessarily return a logical
value** (See details and examples). If NULL, a function is defined internally that
always returns TRUE

The R object that will be passed as an argument to the parameter par of the
function constraint. func

testNM 81

nrep The number of repetitions of the null model

rshift logical. Whether the trajectory should be shifted over the study area.

rrot logical. Whether the trajectory should be rotated around its barycentre.

N The number of animals to simulate.

nlocs The number of relocations building up each trajectory

rho The concentration parameter for wrapped normal distribution of turning angles
(see ?simm.crw)

h the scaling parameter for the movement length (see ?simm. crw)

Cs a list of vectors of length 2. Each vector should contain the x and y coordinates

of the capture sites of the animals in 1traj. This list should therefore have the
same number of elements as 1traj

rDistCs logical. Whether the distances between the barycentre of the trajectories and the
corresponding capture sites should be randomized among trajectories

rAngleCs logical. Whether the angle between the east direction and the line connecting
the capture site and the barycentre of the trajectory should be drawn from an
uniform distribution.

rCentroidAngle logical. Whether the trajectory should be randomly rotated around its barycen-
tre.

rcs logical. Whether the trajectory should be randomly associated to a new capture
site.

newCs a list of vectors of length 2. Each vector should contain the x and y coordinates
of new capture sites. If NULL and rcs=TRUE, the new capture sites are sampled
incs

newDistances a vector of new distances that will be used to define the distances between cap-
ture sites and centroid of simulated trajectories if rDistCs=TRUE

NM, x a null model of class "NMs" or "NMm"
NMs a null model of class "NMs"
count whether the iterations should be displayed

additionnal arguments to be passed to or from other methods

Details

The null model approach has been considered as a useful approach in many fields of ecology to
study biological processes. According to Gotelli and Graves (1996), "A null model is a pattern-
generating model that is based on randomization of ecological data or random sampling from a
known or imagined distribution. The null model is designed with respect to some ecological or
evolutionary process of interest. Certain elements of the data are held constant, and others are
allowed to vary stochastically to create new assemblage patterns. The randomization is designed to
produce a pattern that would be expected in the absence of a particular ecological mechanism".

This approach can be very useful to test hypotheses related to animal movements. The package
adehabitatLT propose several general null models that can be used to test biological hypotheses.
For example, imagine that we want to test the hypothesis that no habitat selection occurs when
the animal moves. The shape of the trajectory, under this hypothesis would be the pure result

82

testNM

of changing activity (moving, foraging, resting). Therefore, a possible approach to test whether
habitat selection actually occurs would be to randomly rotate the trajectory around its barycentre
and shifting it over the study area. The function NMs. randomShiftRotation can be used to define
such a model. It is possible to constrain the randomization by defining a "constraint function" (e.g.
to keep only the randomized trajectories satisfying a given criterion). It is required to specify a
"treatment function" (i.e., a function that will be applied to each randomized trajectory). Once the
null model has been defined, it is then possible to perform the randomizations using the function
testNM. We give below the details concerning the available null models, as well as the constraint
and the treatment functions.

First, two types of null models can be defined: single (NMs) and multiple (NMm) null models.
Consider an object of class "1traj"” containing N bursts. With NMs, the treatment function will be
applied to each randomized burst of relocations. Thus, for example, if nrep repetitions of the null
model are required, nrep repetitions of the null models will be carried out for each burst separately.
The treatment function will be applied on each randomized burst. With NMm, for each repetition,
N randomized bursts of relocations are generated. The treatment is then applied, for each repetition,
to the whole set of N randomized bursts. Thus, NMs are useful to test hypothesis on each trajectory
separately (e.g. individual habitat selection), whereas NMm are useful to test hypotheses relative to
the whole set of animals stored in an object of class 1traj (e.g. interactions between animals). The
only current way to define an object of class NMm is to first define an object of class NMs and then
use the function NMs2NMm to indicate the treatment function that should be applied on the whole set
of trajectories.

The constraint function should be user-defined. It should return a logical value indicating whether
the constraint is satisfied. With NMs, this function should take only two parameters: x and par. The
argument x is a data frame with three columns describing a trajectory (the X and Y coordinates,
and the date as a vector of class "POSIXct"), and the argument par can be any R object required
by the constraint function (e.g. if the constraint to keep 80% of the relocations of the randomized
trajectories within a given habitat type, the parameter par can be a raster map, or a list of raster
maps). With NMm, this function should also take only the two parameters x and par. The argument
par can be any R object required by the constraint function. However, when "NMm" are defined, the
argument x of the constraint function should be an object of class "1traj". If the function NMs2NMm
is used to define the object of class "NMm", two types of constraint can therefore be defined: at the
individual level (in the function NMs. *) and for the whole set of animals (in the function NMs2NMm).
In this case, some constraints will be satisfied at the individual level, and others at the scale of the
whole set of animals. If no constraint function is defined by the user, a constraint function always
returning TRUE is automatically defined internally.

The treatment function can be any function defined by the user, but should take two arguments x
and par, identical to those passed to the constraint function (i.e., x should be a data frame with three
columns for NMs and an object of class "1traj"” for NMm. Note that only one treatment function can
be applied to the randomization: if NMs2NMm is used to define an object of class NMm, the treatment
function defined in the function NMs. * will be ignored, and only the treatment function defined in
the function NMs2NMm will be taken into account. If no treatment function is defined by the user,
a treatment function will be defined internally, simply returning the randomized trajectory (i.e. a
data.frame with three columns for NMs, and an object of class 1traj for NMm).

‘We now describe the list of available null models:

NMs.CRW: this model is a purely parametric model. It simulates a correlated random walk with
specified parameters (see ?simm. crw for a complete description of this model).

NMs . randomCRW: this model also simulates a correlated random walk, but the distributions of the

testNM 83

turning angles and/or distances between successive relocations are derived from the trajectories
passed as arguments. It is possible to randomize the turning angles, the distances between succes-
sive relocations, or both (default).

NMs.randomShiftRotation: this model randomly rotates the trajectory around its barycentre and
randomly shifts it over the study area (but does not change its shape). The function allows for a
random rotation, a random shift or both operations (default).

NMs.randomCs: this model is similar to the previous one: it keeps the shape of the trajectory un-
changed. However, it randomizes the position of the trajectories with respect to a set of capture sites
(it can be used to take into account the fact that a the home range of a sedentary animal captured at a
given place is likely to be close to this place). First a capture site may be randomly drawn from a list
of capture sites (either the actual capture sites or a list passed by the user). Then, the angle between
the east direction and the line connecting the capture site of the animal and the barycentre of its tra-
jectory is randomly drawn from a uniform distribution. Then, the distance between this barycentre
and the capture site is randomly drawn from the observed distribution of distances between capture
sites and trajectory barycentre (or from a set of distances passed as argument). Finally, the trajectory
is randomly rotated around its barycentre.

Value

For objects of class "NMs" a list of N elements (where N is the number of trajectories in the object
of class "1traj"” passed as argument, with each element is a list storing the nrep results of the
treatment function applied to each randomized trajectory.

For objects of class "NMm", a list of nrep elements, each element storing the result of the treatment
function applied to each set of N randomized trajectories.

Author(s)

Clement Calenge <clement.calenge@ofb.gouv.fr>

References

Gotelli, N. and Graves, G. (1996) Null models in Ecology. Smithsonian Institution Press.

Richard, E., Calenge, C., Said, S., Hamann, J.L. and Gaillard, J.M. (2012) Studying spatial inter-
actions between sympatric populations of large herbivores: a null model approach. Ecography, in
press.

See Also

as.ltraj for additional information about objects of class "1traj”

Examples

Not run:
HHHEHHAREE AR
##

example using NMs.randomShiftRotation

first load the data:
data(puechcirc)

84

testNM

data(puechabonsp)
map <- puechabonsp$map

Consider the first animal
on an elevation map

animl <- puechcirc[1]
plot(anim1, spixdf=map[,1])

We define a very simple treatment function

for a NMs model: it just plots the randomized trajectory
over the study area

As required, the function takes two arguments:

x is a data.frame storing a randomized trajectory (three
columns: the x, y coordinates and the date)

par contains the map of the study area

myfunc <- function(x, par)
{
par(mar = c(0,0,0,0))
first plot the map
image (par)

then add the trajectory
lines(x[,1]1, x[,21, lwd=2)

Then we define the null model

##

We define the range of the study area where the trajectory
will be shifted:

rxy <- apply(coordinates(map),2,range)

rxy

We define the null model with 9 repetitions

nmo <- NMs.randomShiftRotation(na.omit(anim1), rshift = TRUE, rrot = TRUE,
rx = rxy[,11, ry = rxy[,2], treatment.func = myfunc,
treatment.par = map, nrep=9)

Then apply the null model
par(mfrow = c(3,3))
tmp <- testNM(nmo)

You may try variations, by setting rshift or rrot to FALSE, to see
the differences

Note that some of the randomized trajectories are located outside the
study area, although all barycentres are located within the X and Y
limits of this study area.

We may define a constraint function returning TRUE only if all

relocations are located within the study area

again, note that the two parameters are x and par
consfun <- function(x, par)

testNM

first convert x to the class SpatialPointsDataFrame
coordinates(x) <- x[,1:2]

then use the function over from the package sp

to check whether all points in x are located inside
the study area

ov <- over(x, geometry(map))

return(all(!is.na(ov)))

Now fit again the null model under these constraints:
nmo2 <- NMs.randomShiftRotation(na.omit(anim1), rshift = TRUE, rrot = TRUE,
rx = rxy[,1]1, ry = rxy[,2], treatment.func = myfunc,
treatment.par = map,
constraint.func = consfun,
constraint.par = map, nrep=9)

Then apply the null model
par(mfrow = c(3,3))
tmp <- testNM(nmo2)

all the relocations are now inside the study area.

HHHHEHHAHHAHRAHRAHRA AR
##
example using NMs.randomCRW

We generate correlated random walks with the same starting

point as the original trajectory, the same turning angle

distribution, and the same distance between relocation

distribution. We use the same constraint function as previously

(all relocations falling within the study area), and we

use the same treatment function as previously (just plot

the result).

mo <- NMs.randomCRW(na.omit(anim1), rangles=TRUE, rdist=TRUE,
treatment.func = myfunc,
treatment.par = map, constraint.func=consfun,
constraint.par = map, nrep=9)

par(mfrow = c(3,3))
tmp <- testNM(mo)

Now, try a different treatment function: e.g. measure
the distance between the first and last relocation,
to test whether the animal is performing a return trip
myfunc2 <- function(x, par)
{

sqrt(sum(unlist(x[1,1:2] - x[nrow(x),1:21)2))

85

86

Now fit again the null model with this new treatment and 499 repetitions:
mo2 <- NMs.randomCRW(na.omit(animl), rangles=TRUE, rdist=TRUE,
treatment.func = myfunc2,
treatment.par = map, constraint.func=consfun,
constraint.par = map, nrep=499)

Then apply the null model

suppressWarnings (RNGversion("3.5.0"))

set.seed(298) ## to make the calculation reproducible
rand <- testNM(mo2)

rand is a list with one element (there is one trajectory in animl).
length(rand[[1]1]1)

The first element of rand is a list of length 499 (there are 499
randomizations).
head(rand[[1]11)

unlist this list:
rand2 <- unlist(rand[[1]1])

calculate the observed average elevation:
obs <- myfunc2(na.omit(anim1)[[1]1[,1:3], map)

and performs a randomization test:
(rt <- as.randtest(rand2, obs, alter="less"))
plot(rt)

Comparing to a model where the animal is moving randomly, and based
on the chosen criterion (distance between the first and last

relocation), we can see that the distance between the first and last
relocation is rarely observed. It seems to indicate that the animal
tends to perform a loop.

B s
#H#
example using NMs2NMm

Given the previous results, we may try to see if all

the trajectories in puechcirc are characterized by return

trips

We need a NMm approach. Because we have 3 burst in puechcirc
we need a summary criterion. For example, the mean

distance between the first and last relocation.

We program a treatment function: it also takes two arguments, but x
is now an object of class "ltraj" !
par is needed, but will not be used in the function

myfunm <- function(x, par)

{

testNM

di <- unlist(lapply(x, function(y) {
sqrt(sum(unlist(y[1,1:2] - y[nrow(y),1:21)"2))

19D

return(mean(di))

}

Now, prepare the NMs object: we do not indicate any treatment

function (it would not be taken into account when NMs would be

transformed to NMm). However, we keep the constraint function

the simulated trajectories should fall within the study area

mo2s <- NMs.randomCRW(na.omit(puechcirc), constraint.func=consfun,
constraint.par = map)

We convert this object to NMm, and we pass the treatment function
mo2m <- NMs2NMm(mo2s, treatment.func = myfunm, nrep=499)

and we fit the model
suppressWarnings(RNGversion("”3.5.0"))
set.seed(908)

resu <- testNM(mo2m)

We calculate the observed mean distance between the
first and last relocation
obs <- myfunm(na.omit(puechcirc))

and performs a randomization test:
(rt <- as.randtest(unlist(resu), obs, alter="less"))
plot(rt)

The test is no longer significant

HHHEHHAEEEEE AR
##
example using NMs.randomCs

Consider this sample of 5 capture sites:

cs <- list(c(701184, 3161020), c(700164, 3160473),
c(698797, 3159908), c(699034, 3158559),
c(701020, 3159489))

image (map)

lapply(cs, function(x) points(x[1], x[2], pch=16))

Consider this sample of distances:
dist <- c(100, 200, 150)

change the treatment function so that the capture sites are showed as
well. Now, par is a list with two elements: the first one is the map
and the second one is the list of capture sites

myfunc <- function(x, par)

{
par(mar = c(0,0,0,0))

88 trajdyn

first plot the map
image(par[[1]1])

lapply(par[[2]], function(x) points(x[1], x[2], pch=16))

then add the trajectory
lines(x[,1], x[,2], lwd=2)

Now define the null model, with the same constraints

and treatment as before

mod <- NMs.randomCs(na.omit(animl1), newCs=cs, newDistances=dist,
treatment. func=myfunc, treatment.par=list(map, cs),
constraint.func=consfun, constraint.par=map,
nrep=9)

apply the null model
par(mfrow = c(3,3))
tmp <- testNM(mod)

End(Not run)

trajdyn Interactive Display of Objects of Class ’ltraj’

Description

This function provides an interactive version of plot.1ltraj, for the exploration of objects of class

ltraj.
Usage

trajdyn(x, burst = attr(x[[1]1]1, "burst”), hscale = 1, vscale =1,

recycle = TRUE, display = c("guess”, "windows"”, "tk"), ...)

Arguments

X an object of class 1traj

burst a character string indicating the burst identity to explore

hscale passed to tkrplot

vscale passed to tkrplot

recycle logical. Whether the trajectory should be recycled at the end of the display

display type of display. The default guess uses a windows graphics device if getOption('device')=="windows

otherwise it uses tk (requiring the tkrplot package).

additional arguments to be passed to the function plot.1ltraj.

typel2typel 89

Author(s)

Clement Calenge <clement.calenge@ofb.gouv.fr>

See Also

ltraj for further information on the class 1traj, and plot.1ltraj for information on arguments
that can be passed to this function.

Examples

Not run:
Without map

data(puechcirc)
trajdyn(puechcirc)

With map
data(puechabonsp)
trajdyn(puechcirc, spixdf = puechabonsp$map)

End(Not run)

typell2typel Change the Type of a Trajectory

Description
This function transforms a trajectory of type II (time recorded) into a trajectory of type I (time not
recorded).

Usage
typelI2typeI(x)

Arguments

X a object of class "ltraj" of type II

Value

An object of class "ltraj"

Author(s)

Clement Calenge <clement.calenge@ofb.gouv.fr>

90 wawotest

See Also

as.ltraj for additional information on the objects of class "ltraj"

Examples

data(puechcirc)
puechcirc
typelI2typel(puechcirc)

wawotest Wald-Wolfowitz Test of Randomness

Description

The function wawotest.default performs a Wald Wolfowitz test of the random distribution of the
values in a vector. The function wawotest.1ltraj performs this tests for the descriptive parameters
dx, dy and dist in an object of class 1traj. The function wawotest is generic.

Usage
wawotest(x, ...)
Default S3 method:
wawotest(x, alter = c("greater”, "less"), ...)
S3 method for class 'ltraj'
wawotest(x, ...)
Arguments
X for wawotest.default, a vector containing the successive observations build-
ing the series. For wawotest.1ltraj, an object of class 1traj.
alter a character string specifying the alternative hypothesis, must be one of "greater"
(default), "less" or "two-sided"
additional arguments to be passed to other functions
Details

The statistic of the test is equal to A = sum(y(i) y(i+1)), with y(N+1) = y(1). Under the hypoth-
esis of a random distribution of the values in the vector, this statistic is normally distributed, with
theoretical means and variances given in Wald & Wolfowitz (1943).

Value

wawotest.default returns a vector containing the value of the statistic (a), its esperance (ea), its
variance (va), the normed statistic (za) and the P-value. wawotest.ltraj returns a table giving
these values for the descriptive parameters of the trajectory.

whale 91

Author(s)

Stephane Dray <dray@biomserv.univ-lyonl.fr>

References

Wald, A. & Wolfowitz, J. (1943) An exact test for randomness in the non-parametric case based on
serial correlation. Ann. Math. Statist., 14, 378-388.

See Also

indmove and runsNAltraj for other tests of independence to be used with objects of class "ltraj"

Examples

data(puechcirc)
puechcirc
wawotest (puechcirc)

whale Argos Monitoring of Whale Movement

Description

This data set contains the relocations of one right whale.

Usage
data(whale)

Format

This data set is a regular object of class 1traj (i.e. constant time lag of 24HO00)

Details

The coordinates are given in decimal degrees (Longitude - latitude).

Source

http://whale.wheelock.edu/Welcome.html

Examples

data(whale)

plot(whale)

92 which.ltraj

which.ltraj Identify Relocations Fullfilling a Condition in an Object of Class
"ltraj"”

Description

This function identifies the relocations fullfilling a condition in an object of class 1traj.

Usage

which.ltraj(ltraj, expr)

Arguments
ltraj an object of class 1traj
expr a character string giving any syntactically correct R logical expression implying
the descriptive elements in 1traj (or the name of a variable in the optional
attribute infolocs)
Value

A data frame giving the ID, the Bursts and the relocations for which the condition described by
expr is verified.

Author(s)

Clement Calenge <clement.calenge@ofb.gouv.fr>

See Also

1traj for additional information about objects of class 1traj

Examples

data(puechcirc)
puechcirc

Identifies the relocations for which time lag is
upper than one hour

which.ltraj(puechcirc, "dt>3600")
puechcirc[burst="CH930824"1[[1]]1[27:28,]

Identifies the speed between successive
relocations upper than ©.8 meters/second
which.1ltraj(puechcirc, "dist/dt > 0.8")

This is the case for example for the
relocations #28, 58, 59 and 60 of "CH930824"

which.Itraj

puechcirc[burst="CH930824"1[[1]]1[c(28,58,59,60),]

93

Index

* NA
na.omit.ltraj, 45
runsNAltraj, 59

* chron
lavielle, 32
residenceTime, 56

* cluster
lavielle, 32

+ datasets
albatross, 4
bear, 10
buffalo, 10
capreochiz, 14
capreotf, 15
hseal, 25
ibex, 26
ibexraw, 26
mouflon, 44
porpoise, 49
puechcirc, 50
rupicabau, 61
teal, 78
whale, 91

x distribution
Chi, 15
qggchi, 50
testNM, 79

+ hplot
hist.ltraj, 24
ltraj2spdf, 37
plot.ltraj, 47
plotltr, 48
runsNAltraj, 59
sliwinltr, 76
trajdyn, 88

* htest
acfdist.ltraj, 3
indmove, 27
wawotest, 90

* manip

mindistkeep, 39

* nonparametric

testNM, 79

* programming

burst, 11
cutltraj, 17
is.regular, 29
is.sd, 30
offsetdate, 46
set.limits, 61
setNA, 63
setto, 65
subsample, 77
typell2typel, 89
which.1ltraj, 92

* spatial

* tS

as.ltraj, 5
c.ltraj, 13
Extract.ltraj, 19
fpt, 20
gdltraj, 22
hbrown, 23

1d, 36
modpartltraj, 40
plot.1ltraj, 47
rasterize.ltraj, 52
redisltraj, 54
simm.bb, 67
simm.brown, 68
simm.crw, 69
simm.levy, 71
simm.mba, 72
simm.mou, 74
trajdyn, 88

residenceTime, 56

[.1traj (Extract.ltraj), 19

[<-.

ltraj (Extract.ltraj), 19

INDEX

acfang.ltraj (acfdist.1ltraj), 3
acfdist.ltraj, 3

albatross, 4
as.ltraj, 4,5, 37,52, 83, 90

bear, 10

bestpartmod (modpartltraj), 40
bindltraj (cutltraj), 17
buffalo, 10

burst, 11

burst<- (burst), 11

c.ltraj, 8,13
capreochiz, 14
capreotf, 15

Chi, 15

chi, 51,71, 72

chi (Chi), 15
Chisquare, 16

chooseseg (lavielle), 32
cutltraj, 17, 66

dchi (Chi), 15
dl (1d), 36

Extract.ltraj, 8, 13,19

findpath (lavielle), 32
fpt, 20

gdltraj, 8, 13, 20,22

hbrown, 23, 68, 69
hist, 24
hist.ltraj, 24
hseal, 25

ibex, 26

ibexraw, 26

id (burst), 11

id<- (burst), 11
indmove, 27, 91

infolocs (burst), 11
infolocs<- (burst), 11
is.regular, 8, 29, 64, 66, 78
is.sd, 18, 30

lavielle, 32,57
1d, 36

95

ltraj, 12, 13, 18, 20-22, 24, 29, 30, 38, 39,
43,4648, 51, 55, 60, 62, 64, 66, 68
69,71-73,75,77, 78, 89, 92

ltraj (as.ltraj), 5

ltraj2sldf (1traj2spdf), 37

ltraj2spdf, 37

meanfpt (fpt), 20
mindistkeep, 39

modpartltraj, 40
mouflon, 44

na.omit.ltraj, 45

names, /2

NMs . CRW (testNM), 79

NMs. randomCRW (testNM), 79
NMs.randomCs (testNM), 79
NMs.randomShiftRotation (testNM), 79
NMs2NMm (testNM), 79

offsetdate, 46

partmod.ltraj (modpartltraj), 40
pchi (Chi), 15

plot.fipati (fpt), 20
plot.1ltraj, 8, 13,47, 89
plot.partltraj (modpartltraj), 40
plot.resiti (residenceTime), 56
plotltr, 48

plotNAltraj (runsNAltraj), 59
porpoise, 49

POSIX1t, 22

print.lavielle (lavielle), 32
print.ltraj(as.ltraj),5
print.modpartltraj (modpartltraj), 40
print.NMm (testNM), 79

print.NMs (testNM), 79
print.partltraj (modpartltraj), 40
print.resiti (residenceTime), 56
puechcirc, 50

qchi (Chi), 15

qgqchi, 50
qggnorm.ltraj, 24
qggnorm. ltraj (qqchi), 50
qgplot, 57

rasterize.ltraj, 52
rchi (Chi), 15
rec (as.ltraj),5

96

redisltraj, 54
removeinfo (burst), 11
residenceTime, 56
runsNAltraj, &8, 59, 91
rupicabau, 61
rwrpnorm, 71, 72

sd2df, 62

sd2df (is.sd), 30
set.limits, 317, 61
setNA, 8, 45, 60, 63, 66
setto, 8, 62, 64, 65
simm.bb, 67
simm.brown, 23, 68, 71-73, 75
simm.crw, 69, 71-73,75
simm.levy, 71, 72
simm.mba, 71, 72,72, 75
simm.mou, 73, 74

sliwinltr, 48,76
strptime, 62

subsample, 77
summary.ltraj (as.ltraj), 5
summaryNAltraj (runsNAltraj), 59

teal, 78

testang.ltraj (indmove), 27
testdist.1ltraj (indmove), 27
testNM, 79

trajdyn, 8, 13, 88
typell2typel, 89

varlogfpt (fpt), 20

wawotest, 4, 90
whale, 91
which.1ltraj, 92

INDEX

	acfdist.ltraj
	albatross
	as.ltraj
	bear
	buffalo
	burst
	c.ltraj
	capreochiz
	capreotf
	Chi
	cutltraj
	Extract.ltraj
	fpt
	gdltraj
	hbrown
	hist.ltraj
	hseal
	ibex
	ibexraw
	indmove
	is.regular
	is.sd
	lavielle
	ld
	ltraj2spdf
	mindistkeep
	modpartltraj
	mouflon
	na.omit.ltraj
	offsetdate
	plot.ltraj
	plotltr
	porpoise
	puechcirc
	qqchi
	rasterize.ltraj
	redisltraj
	residenceTime
	runsNAltraj
	rupicabau
	set.limits
	setNA
	sett0
	simm.bb
	simm.brown
	simm.crw
	simm.levy
	simm.mba
	simm.mou
	sliwinltr
	subsample
	teal
	testNM
	trajdyn
	typeII2typeI
	wawotest
	whale
	which.ltraj
	Index

