
Package ‘QGA’
January 20, 2025

Type Package

Title Quantum Genetic Algorithm

Version 1.0

Date 2024-05-29

Description Function that implements the Quantum Genetic Algorithm, first pro-
posed by Han and Kim in 2000. This is an R implementation of the 'python' application devel-
oped by Lahoz-
Beltra (<https://github.com/ResearchCodesHub/QuantumGeneticAlgorithms>). Each op-
timization problem is represented as a maximization one, where each solution is a se-
quence of (qu)bits. Following the quantum paradigm, these qubits are in a superposi-
tion state: when measuring them, they collapse in a 0 or 1 state. After measurement, the fit-
ness of the solution is calculated as in usual genetic algorithms. The evolution at each itera-
tion is oriented by the application of two quantum gates to the amplitudes of the qubits: (1) a ro-
tation gate (always); (2) a Pauli-X gate (optionally). The rotation is based on the theta angle val-
ues: higher values allow a quicker evolution, and lower values avoid local maxima. The Pauli-
X gate is equivalent to the classical mutation operator and determines the swap be-
tween alfa and beta amplitudes of a given qubit. The package has been devel-
oped in such a way as to permit a complete separation between the engine, and the particu-
lar problem subject to combinatorial optimization.

Encoding UTF-8

LazyLoad yes

License GPL (>= 2)

Depends R (>= 3.5.0)

Suggests knitr

NeedsCompilation no

URL https://barcaroli.github.io/QGA/,

https://github.com/barcaroli/QGA/

BugReports https://github.com/barcaroli/QGA/issues

VignetteBuilder knitr

RoxygenNote 7.2.3

1

https://github.com/ResearchCodesHub/QuantumGeneticAlgorithms
https://barcaroli.github.io/QGA/
https://github.com/barcaroli/QGA/
https://github.com/barcaroli/QGA/issues

2 QGA

Author Giulio Barcaroli [aut, cre]

Maintainer Giulio Barcaroli <gbarcaroli@gmail.com>

Repository CRAN

Date/Publication 2024-05-31 18:42:49 UTC

Contents
QGA . 2

Index 5

QGA Quantum Genetic Algorithm

Description

Main function to execute a Quantum Genetic Algorithm

Usage

QGA(
popsize = 20,
generation_max = 200,
nvalues_sol,
Genome,
thetainit = 3.1415926535 * 0.05,
thetaend = 3.1415926535 * 0.025,
pop_mutation_rate_init = NULL,
pop_mutation_rate_end = NULL,
mutation_rate_init = NULL,
mutation_rate_end = NULL,
mutation_flag = TRUE,
plotting = TRUE,
verbose = TRUE,
progress = TRUE,
eval_fitness,
eval_func_inputs,
stop_limit = NULL

)

Arguments

popsize the number of generated solutions (population) to be evaluated at each iteration
(default is 20)

generation_max the number of iterations to be performed (default is 200)

QGA 3

nvalues_sol the number of possible integer values contained in each element (gene) of the
solution

Genome the length of the genome (or chromosome), representing a possible solution

thetainit the angle (expressed in radiants) to be used when applying the rotation gate
when starting the iterations (default is pi * 0.05, where pi = 3.1415926535)

thetaend the angle (expressed in radiants) to be used when applying the rotation gate at
the end of the iterations (default is pi * 0.025, where pi = 3.1415926535)

pop_mutation_rate_init

initial mutation rate to be used when applying the X-Pauli gate, applied to each
individual in the population (default is 1/(popsize+1))

pop_mutation_rate_end

final mutation rate to be used when applying the X-Pauli gate, applied to each
individual in the population (default is 1/(popsize+1))

mutation_rate_init

initial mutation rate to be used when applying the X-Pauli gate, applied to each
element of the chromosome (default is 1/(Genome+1)))

mutation_rate_end

final mutation rate to be used when applying the X-Pauli gate, applied to each
element of the chromosome (default is 1/(Genome+1))

mutation_flag flag indicating if the mutation gate is to be applied or not (default is TRUE)

plotting flag indicating plotting during iterations

verbose flag indicating printing fitness during iterations

progress flag indicating progress bar during iterations

eval_fitness name of the function that will be used to evaluate the fitness of each solution
eval_func_inputs

specific inputs required by the eval_fitness function

stop_limit value to stop the iterations if the fitness is higher

Details

This function is the ’engine’, which performs the quantum genetic algorithm calling the function
for the evaluation of the fitness that is specific for the particulare problem to be optmized.

Value

A numeric vector (positive integers) giving the best solution obtained by the QGA

Examples

#--
Fitness evaluation for Knapsack Problem
#--
KnapsackProblem <- function(solution,

eval_func_inputs) {
solution <- solution - 1
items <- eval_func_inputs[[1]]

4 QGA

maxweight <- eval_func_inputs[[2]]
tot_items <- sum(solution)
Penalization
if (sum(items$weight[solution]) > maxweight) {

tot_items <- tot_items - (sum(items$weight[solution]) - maxweight)
}
return(tot_items)

}
#--
Prepare data for fitness evaluation
items <- as.data.frame(list(Item = paste0("item",c(1:300)),

weight = rep(NA,300)))
set.seed(1234)
items$weight <- rnorm(300,mean=50,sd=20)
hist(items$weight)
sum(items$weight)
maxweight = sum(items$weight) / 2
maxweight
#----------------------
Perform optimization
popsize = 20
Genome = nrow(items)
solutionQGA <- QGA(popsize = 20,

generation_max = 500,
nvalues_sol = 2,
Genome = nrow(items),
thetainit = 3.1415926535 * 0.05,
thetaend = 3.1415926535 * 0.025,
pop_mutation_rate_init = 1/(popsize + 1),
pop_mutation_rate_end = 1/(popsize + 1),
mutation_rate_init = 1,
mutation_rate_end = 1,
mutation_flag = TRUE,
plotting = TRUE,
verbose = FALSE,
progress = TRUE,
eval_fitness = KnapsackProblem,
eval_func_inputs = list(items,

maxweight))
#----------------------
Analyze results
solution <- solutionQGA[[1]]
solution <- solution - 1
sum(solution)
sum(items$weight[solution])
maxweight

Index

QGA, 2

5

	QGA
	Index

